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ARTICLES 

Liu Hui and the First Golden Age 
of Chinese Mathematics 

PHILIP D. STRAFFIN, JR. 
Beloit College 

Beloit, WI 53511 

Introduction 

Veiy little is known of the life of Liu Hui, except that he lived in the Kingdom of Wei 
in the third centuiy A.D., when China was divided into three kingdoms at continual 
war with one another. What is known is that Liu was a mathematician of great power 
and creativity. Liu's ideas are preserved in two works which survived and became 
classics in Chinese mathematics. The most important of these is his commentary, 
dated 263 A.D., on the Jiuzal'ang suansht, the great problem book known in the West 
as the Nine Chapters on the Mathemcatical Art. The second is an independent work on 
mathematics for surveying, the Haidao sua'njing, known as the Sea Island Mathemati- 
cal Manutal. 

In this paper I would like to tell you about some of the remarkable results and 
methods in these tvo works. I think they should be more widely known, for several 
reasons. First, we and our students should know more about mathematics in other 
cultures, and we are probably less familiar with Chinese mathematics than with the 
Greek, Indian, and Islamic traditions more directly linked to the historical develop- 
ment of modern mathematics. Second, Western mathematicians who do know 
something about the Chinese tradition often characterize Chinese mathematics as 
calculational and utilitarian rather than theoretical. Chinese mathematicians, it is said, 
developed clever methods, but did not care about mathematical justification of those 
methods. For example, 

Mathematics was overwhelmingly concerned with practical matters that 
were important to a bureaucratic government: land measurement and 
surveying, taxation, the making of canals and dikes, granary dimensions, 
and so on ... Little mathematics was undertaken for its owni sake in China. 
[2, p. 26] 

While there is justice in this generalization, Liu Hui and his successors Zu 
Chongzhi and Zu Gengzhi were clearcut exceptions. Their methods were different 
from those of the Greeks, but they gave arguments of cogency and clarity which we 
can honor today, and some of those arguments involved infinite processes which we 
recognize as underlying the integral calculus. 

My final reason is that I think mathematical genius should be honored wherever it 
is found. I hope you will agree that Liu Hui is deserving of our honor. 

To understand the context of Liu's work, we must first consider the state of Chinese 
mathematical computation in the third centuiy A.D. We will then look at the general 
nature of the Nine Chapters and Liu's commentaiy on it, and at Liu's Sea Island 
Mathematical Manutal. I will then focus on three of Liu's most remarkable achieve- 
ments in geometiy-his calculation of -, his derivation of the volume of pyramidal 
solids, and his work on the volume of a sphere and its completion by Zu Gengzhi. 

1 63 
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Chinese Calculation in the First Century A.D. 

From at least the period of the Warring States (475-221 B.C.) a base ten positional 
number system was in common use in China [12]. Calculations were done using rods 
made from bone or bamboo, on a counting board marked off into squares. The 
numerals from 1 to 9 were represented by rods, as in FIGURE 1. Their placement in 
squares, from left to right, represented decreasing powers of ten. Rods representing 
odd powers of ten were rotated 900 for clarity in distinguishing the powers. A zero was 
represented simply by a blank square, called a kong, where the marking into squares 
prevented the ambiguity sometimes present in, say, the Babylonian number system. 

I 11 111 1111 11111 1 II III liii 
1 2 3 4 5 6 7 8 9 

726 

63 

1 8 
58 
54 

FIGURE 1 
Numerals and th-e division algorithm. 

There were efficient algorithms for addition, subtraction, multiplication, and divi- 
sion. For example, the division algorithm is shown in FIGURE 1, except that you should 
imagine the operati ons being done rapidly with actual sticks. Notice the close 
relationship to our modern long division algorithm, although subtraction is easier 
because sticks are physically removed. In fact, it is identical to the division algorithm 
given by al-Khwarizmi in the ninth century and later transmitted to Europe, raising 
the complicated problem of possible transmission through India to the West [12]. (See 
[17] for a conser-vative discussion.) 

Notice how the answer 726 4 ends up with 726 in the top row, and then 4 above 9. 
This led Chinese calculators to represent fractions by placing the numerator above the 
denominator on the counting board. By the time of the Nine Chapters there was a 
completely developed arithmetic of fractions: they could be multiplied, divided, 
compared by cross multiplication, and reduced to lowest form using the "Euclidean 
algorithm" to find the largest common factor of the numerator and denominator. 
Addition was performed as a~ +, ? = ad+ bc and then the fraction was reduced if b d bdI 
necessary. In the Nine Chapters, 160 of the 246 problems involve computations with 
fractions [11]. 

We will see that Chapter Eight of the Nine Chapters solves systems of linear 
equations by the method known in the West as "Gaussian Elimination" after C. F. 
Gauss (1777-1855), which, of course, involves subtracting one row of numbers from 
another. In the course of such calculations, it is inevitable that negative numbers will 
arise. This presented no problems to Chinese calculators: two colors of rods were 
used, and correct rules were given for manipulating the colors. Liu Hui suggested in 
his com-mentarv on the Nine Chapters that negative numbers be treated abstractly: 
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Whenl a number is said to be negative, it does not necessarily mean that 
there is a deficit. Similarly, a positive number does not necessarily mean 
that there is a gain. Therefore, even though there are red (positive) and 
black (negative) numerals in each column, a change in their colors 
resulting from the operations will not jeopardize the calculation. [17, 
pp. 201-202] 

Perhaps most remarkably, Chinese mathematicians had developed by the time of 
the Nine Chapters efficient algorithms for computing square roots and cube roots of 
arbitrarily large numbers. The algorithm for the square root computed the root digit 
by digit, by the same method which used to be taught in American schools before the 
coming of the calculator. Martzloff [17] works through an example, and Lam [11] 
shows how it would look on a counting board. The algorithm for finding cube roots 
was similar, although, of course, more complicated. 

In other words, by the time of the Nine Chapters the Chinese had developed a 
number system and a collection of calculational algorithms essentially equivalent to 
our modern system, with the exception of decimal fractions. 

Nine Chapters on the Mathematical Art 

Nine Chapters on the Mathemnatical Art is a compilation of 246 mathematical 
problems loosely grouped in nine chapters. Some of its material predates the great 
book-burning and burial-alive of scholars of 213 B.C., ordered by emperor Shih 
Huang-ti of the Qin dynasty. Indeed, Liu Hui writes in the preface of his commen- 
tary: 

In the past, the tyrant Qin burnt written documents, which led to the 
destruction of classical knowledge ... Because of the state of deterioration 
of the ancient texts, Zhang Cang and his team produced a new version ... 
filling in what was missing. [17, p. 129] 

It is believed that the Nine Chapters were put in their final form sometime before 
100 A.D. It "became, in the Chinese tradition, the mandatory reference, the classic of 
classics." [17, p. 14] At the time of this writing there is no complete English 
translation of the Nine Chapters, although there are many scholarly Chinese editions, 
and translations into Japanese, German, and Russian. An English translation by J. N. 
Crossley and Shen Kangsheng is in preparation, to be published by Springer-Verlag. 
For summaries, see [11], [17], [18], [21]. 

The format of the Nine Chapters is terse: a problem, its answer, and a recipe for 
obtaining the answer. Usually no justification is given for the method of solution. Just 
the facts. 

Chapter One has many problems on the arithmetic of fractions, and a section on 
computing areas of planar figures, with correct formulas for rectangles, triangles, and 
trapezoids. Here's a problem on the area of a circle: 

1.32: There is a circular field, circumference 181 bu and diameter 60' bu. Find the 
area of the field. 

Answer: 11 mu 90 2 bu. (1 mitt = 240 btt) 

Method: Mutually multiply half of the circumference and half of the diameter to 
obtain the area in bu. Or multiply the diameter by itself, then by 3 and divide 
by 4. Or multiply the circumference by itself and divide by 12. [11, p. 13] 
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The first method is correct, but the data of the problem and the other two methods 
assume that the ratio of the circumference of a circle to its diameter, which we call -, 
is three. This assumption is made throughout the Nine Chapters. 

Chapter Two is a series of commodity exchange problems involving proportions. 
Chapter Three concerns problems of "fair division." The solutions given may not 
seem veiy fair to us: 

3.8: There are five persons: Dai Fu, Bu Geng, Zan Niao, Shang Zao, and Gong Shi. 
They pay a total of 100 qia'n. A command desired that the highest rank pays the 
least, and the successive ones gradually more. Find the amount each has to pay. 
Answer: Dai Fu pays 8 104 qian; Bu Geng pays 10130 qian; Zan Niao pays 14832 
qian; Shang Zao pays 21234 qian; Gong Shi pays 43109 qian. [11, p. 21] 

The method calls for dividing the cost in proportions 5: 4: 3: 2 1, which gives 
practice in adding fractions, but badly exploits the lowest rank person! 

Chapter Four contains problems asling for the calculation of square roots and cube 
roots. The last problem of Chapter Four is 

4.24: There is a sphere of volume 16441866437500 chi. Find the diameter. 
Answer: 14300 chi. 
Method: Put down the volume in chi, multiply by 16 and divide by 9. Extract 
the cube root of the result to get the diameter of the sphere. [11, p. 23] 

This gives the formula V = 9d3 for the volume of a sphere in terms of its diameter, 
which isn't correct even if we take - = 3. 

Chapter Five asks for the volumes of a number of solids, including several different 
kinds of pyramids, frustums of pyramids, cones and their frustums, and a wedge with a 
trapezoidal base. The given formulas are all correct, but no hint is given of how they 
were derived. 

Chapter Six deals with fair division in a much more realistic way than the problems 
in Chapter Three. There are problems on transporting grain, taxation, and irrigation. 
There are also some less realistic problems which make one wonder how Chinese 
students must have felt about "word problems": 

6.14: There is a rabbit which walks 100 bat before it is chased by a dog. When the dog 
has gone 250 but, it stops and is 30 bu behind the rabbit. If the dog did not 
stop, find how many more bu it would have to go before it reaches the rabbit. 

Answer: 1071 bu. [11, p. 28] 

Chapter Seven has a number of problems involving two linear equations in two 
unknowns, usually solved by the method of "false position." Problems in Chapter 
Eight involve solving n linear equations in n unknowns for n up to 5. The method of 
solution, described in detail, is Gaussian elimination on the appropriate matrix 
represented on the counting board. The Chinese called this method farngcheng. See 
[17] for an extended example. Perhaps the most interesting problem is 

8.13: There are five families which share a well. 2 of A's ropes are short of the well's 
depth by 1 of B's ropes. 3 of B's ropes are short of the depth by 1 of C's ropes. 4 
of C's ropes are short by 1 of D's ropes. 5 of D's ropes are short by 1 of E's 
ropes. 6 of E's ropes are short by 1 of A's ropes. Find the depth of the well and 
the length of each rope. 
Answer: The well is 721 cun deep. A's rope is 265 curn long. B's rope is 191 cun 
long. C's rope is 148 cun long. D's rope is 129 cun long. E's rope is 76 cun 
long. [11, p. 37] 
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Notice that this problem involves five equations and six unknowns, and thus is 
indeterminate. Liu Hui pointed out that the solution gives only the necessary 
proportions for the lengths. It is also the smallest solution in integer lengths. 

The problems in Chapter Nine involve right triangles and the "Pythagorean" 
theorem, which had long been independently known in China, where it was called the 
gou-gu theorem [26]. No proof is given of this theorem, or of a correct formula for 
the diameter of the inscribed circle in a right triangle. Similar right triangles are used 
to solve surveying problems involving one unknown distance or length. 

Liu Hui's Commentary 

The Nine Chapters presents its solution methods without justification. Liu Hui in his 
commentary set himself the goal of justifying those methods. One reason was 
practical, as Liu wrote about the Nine Chapters' use of 3 for the ratio of the 
circumference of a circle to its diameter: 

Those who transmit this method of calculation to the next generation 
never bother to examine it thoroughly but merely repeat what they learned 
from their predecessors, thus passing on the error. Without a clear 
explanation and definite justification it is very difficult to separate truth 
from fallacy. [20, p. 349] 

Another reason has to do with seeing and appreciating the logical structure of 
mathematics: 

Things are related to each other through logical reasons so that like 
branches of a tree, diversified as they are, they nevertheless come out of a 
single trunk. If we elucidate by prose and illustrate by pictures, then we 
may be able to attain conciseness as well as comprehensiveness, clarity as 
well as rigor. [20, p. 355] 

In this section, we'll begin our examination of Liu's attempt to attain "clarity as well as 
rigor" by looking at five of his contributions. 

Problems in Chapter Four of the Nine Chapters require taking square roots using 
the square root algorithm. To take the square root of a 2k + 1 or 2k + 2 digit number 
N, the algorithm begins by finding the largest number AO = a0 x lOk, where a0 is a 
digit, such that A 2 < N. Then compute N1 = N - A2. Now find the largest A1 = 
a XlOk-l such that A1(2AO +A1) < N1, and form N2 = N1-A1(2AO +Al). Con- 
tinue in this manner. If N is a perfect square, its square root will be the (k + 1)-digit 
number S = aoa1 .. ak. 

Liu Hui first gives a geometric argument, similar to arguments used in Greek 
geometric algebra, to explain why the algorithm works. Consider FIGURE 2, which is 
not to scale. (Liu's original figures were all lost, but most of them are easy to 
reconstruct from his verbal descriptions.) From a square of area N, we first subtract a 
square of side AO, then the L-shaped figure of width A1, which the Greeks called a 
gnomon, then a gnomon of width A2, and so on until we exhaust the square. 

Well, at least we exhaust the square if N is a perfect square, as it is in many of the 
Nine Chapters problems. (Some of the problems involve rationlal perfect squares, for 
instance N = 564752' in problem 4.15.) But Liu also asks what happens if N is not a 
perfect square: "In this case it is not sufficient to say what the square root is about by 
simply ignoring the [remaining] gnomon." [7, p. 211] For integral but non-square N, 
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N 

AO Al A2 
FIGURE 2 

Geometry of the square root algorithm. 

the square root algorithm yields N = S2 + R, where 0 < R < 2S + 1. Liu gives two 
ways of approximating the square root. The first is to take a rational approximation 
using 

S+ 25+ I < <NS+ 2S [17] 

The second is even more interesting. If we continue the algorithm on the counting 
board past the last digit of N, we get 

Vn = ao a,... ak + ak+i + 100k+l 100 

The ancient Chinese had names for the fractions l/lOk for k up to five. Liui suggests 
continuing the calculation down to "those small numbers for which the units do not 
have a name," and if necessary adding a fraction to ak+5 to get even greater accuracy 
[11]. In other words, it is not stretching very much to say that Liu Hui invented 
decimals; he certainly invented their calculational equivalent. We will see that he 
needed this kind of accuracy for his calculation of vr. Liu also gave a justification for 
the cube root algorithm using a three-dimensional figure similar to FIGURE 2. 

Chapter Eight of the Nine Chapters solved systems of liniear equations using the 
farngcheng method on a counting board matrix: multiples of rows (actually columns, 
since the equations were set up vertically on the counting board) were systematically 
subtracted from other rows to reduce the matrix to triangular form. Liu Hui explains 
that the goal of this method is to reduce to a minimum the number of computations 
needed to find the solution: "generally, the more economic a method is, the better it 
is." In fact, Liu compares two different fangcheng methods for solving problem 8.18 
by counting the number of counting board operations needed in each method [17]. 
Surely this is the first example in history of an operation count to compare the 
computational efficiency of two algorithms. 
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Finally, Chapter Nine of the Nine Chapters presented, without justification, 
solutions to a number of problems involving right triangles. Liu Hui justified these 
solutions by a series of ingenious "dissection" arguments, based on the principles that 
congruent figures have the samne area, and that if we dissect a figure into a finite 
number of pieces, its area is the sum of the areas of the pieces. I'll give two exaimples. 

The solution to problem 9.16 finds the diameter d of a circle inscribed in a right 
triangle with legs a and b and hypotenuse c by 

2 ab 
d za+b+c 

Liu's dissection proof of this result can be reconstructed as in FIGURE 3 [20]. See it? 
For the second example, consider the famous gou-gtu theorem that for a right 

triangle as above, a2 + b2 = c2. For this theorem, Liu's verbal description of his 
proof is as follows: 

The shorter leg multiplied by itself is the red square, and the longer leg 
multiplied by itself is the blue square. Let them be moved about so as to 
patch each other, each according to its type. Because the differences are 
completed, there is no instability. They form together the area of the 
square on the hypotenuse. [31, p. 71] 

C 

b xX4= 
c~~~~~~~~~ 

x 4 

a 

a 

d 
FIGURE 3 

Diameter of a circle inscribed in a light triangle. 

Clearly, Liu had a dissection proof of the gou-gU theorem. Just as clearly, the 
verbal description does not enable us to reconstruct Liu's diagram. FIGURE 4 shows two 
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C c 
blue 

red blue_____ ______ _ 

b a 

a 

red 
(a) (b) 

FIGURE 4 
Dissection proofs of the got-gu theorem. 

proposed constructions. The first, where the square on the hypotenuse is allowed to 
overlap the squares on the legs, is due to Gu Guanguang in 1892, reported in [17]. 
The second, less straightforward but without overlapping squares, is from [31]. 

The Sea Island Mathematical Manual 

Chapter Nine of the Nine Chapters included surveying problems involving one 
unknown distance or length. However, most real surveying problems involve several 
such unknowns. For example, we might wish to determine the height of, and distance 
to, a mountain which is inaccessible, perhaps because it is on an island we cannot 
reach. Liu Hui pointed out that we can do this by making two observations, and 
worked out the geometr-y of how to make two observations yield the unknown 
distances. If we wish also to know the height of a pine tree on top of that inaccessible 
mountain, we can do it with three observations. His compilation of solutions to nine 
illustrative surveying problems became the Sea Island Mathemnatical Manual. The 
mountain on the sea island is the first problem; the pine tree is the second. [1] and 
[24] include complete translations with commentary. 

Here is the sea island problem: 

For looking at a sea island, erect two poles of the same height, 30 chi, the 
distance between the front and rear pole being 6000 chi. Assume that the 
rear pole is aligned with the front pole. Move away 738 chi from the front 
pole and observe the peak of the island from ground level; it is seen that 
the tip of the front pole coincides with the peak. Move backward 762 chi 
from the rear pole and observe the peak from ground level again; the tip 
of the rear pole also coincides with the peak. What is the height of the 
island and how far is it from the front pole? 
Answer: The height of the island is 7530 chi. It is 184500 chi from the 
front pole. [24, p. 20] 

The extant version of the Sea Island Manttal contains only the problems, answers, 
and recipes for obtaining the answers, exactly as in the Nine Chapters. Liu Hui also 
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gave proofs for the correctness of his methods, but these proofs and the accompanying 
diagrams were not preserved, and the best we can do is offer plausible reconstruc- 
tions. Using the notation of FIGURE 5, Liu's method for solution corresponds to the 
formulas 

bd a2d h =x +b= +b, ya-a 

FIGURE 5 
The height of a sea islanld. 

We mnust obtain these formnulas using only simlilar right triangles, since there was no 
concept of angle, much less any trigonometry, in ancient Chinese mathematics, nor 
was there any use of similar triangles other than right triangles. Here is one method. 
Since A\ ABD A i DGH, 

y +d al so xa1l=by +bd. (1) 

Since A\ ABC A \CEF, 

x ~ x 

t=a so xac,=btj. (2) 

y a d 

Subtracting these equations gives x(az1 - az) = bd, whichl leads to the expression for 
the heighlt, and thenT substitution gives the distance. 

Swetz [24] gives a very plausible alternate derivation whicl avoids the use of similar 
triangles completely. It is based on a lemma about rectangles which is illustrated in 
FIGURE 6a: if we dode a rectangle into four smaller rectangles at any point on its 

x b 

y a 22a 

(a) A rectangular lemma. (b) A rectangular proof. 
FIGURE 6 

This content downloaded from 204.235.148.92 on Sat, 23 Jan 2016 10:53:09 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1 72 MATHEMATICS MAGAZINE 

diagonal, then the two rectangles shaded in the figure must have the same area. This 
follows from a dissection argument. The diagonal divides the rectangle into two 
congruent triangles. From these triangles, subtracting the congruent triangles labeled 
A and B yields the given rectangles. If we apply this result twice to FIGURE 6b, the 
equal \\\ rectangles give equation (1), and the equal /// rectangles give equation 
(2). This method is also discussed in [9]. 

The Sea Island Manual was certainly not the deepest mathematics which Liu Hui 
did, but it probably had the greatest immediate impact. Recall that the kingdom of 
Wei was continually at war during the time of Liu's work. Sulveying was important for 
maps which supported war, as well as the administrative bureaucracy. Needham 
reports that the Wei general Deng Ai always "estimated the heights and distances, 
measuring by finger breadths before drawing a plan of the place and fixing the 
position of his camp." [24, p. 15] There is an interesting parallel in the West. Swetz 
notes that Greek armies had a specific reason for wanting to calculate unknown height 
at an inaccessible distance, quoting Heron of Alexandria: 

How many times in the attack of a stronghold have we arrived at the foot 
of the ramparts and found that we made our ladders and other necessaly 
implements for the assault too short, and have consequently been defeated 
simply for not knowing how to use the Dioptera for measuring the heights 
of walls; such heights have to be measured out of the range of enemy 
missiles. [24, p. 28] 

The Calculation of iT 

Recall that problem 1.32 of the Nine Chapters gave the correct formula for the area 
of a circle, but used a value of three for w. Liu points out that for a circle of radius 
one, the area of a regular dodecagon inscribed in the circle is three, so the area of the 
circle must be greater than three. He then proceeds to estimate the area of the circle 
more exactly by calculating the areas of inscribed 3 2 '-gons as follows. In a circle of 
radius r, let c,, be the length of the side of an inscribed n-gon, a,, be the length of the 
perpendicular from the center of the circle to the side of the n-gon, and S, be the 
area of the n-gon. See FIGURE 7. Then we can calculate inductively 

C6 =r, 

2llr - /2) a Vr (c,,/2)+ 

C2n 
= +C,/ (r -a), 

1 
2,l= 2nrc, 

The last formula is clever, and follows from noticing that each of the 2n triangles 
making up the 2n-gon can be thought of as havring base r and height c,,/2. Moreover, 
FIGURE 7 shows that the area S of the circle satisfies 

S2n < S < S,, + 2(S2n - S,,) = 2S2n - S,l 

Liu considers whlat happens when we take n larger and larger: "the finer one cuts, 
the smaller the leftover; cut after cut until no more cut is possible; then it coincides 
with the circle and there is no leftover." [20, p. 347] As n gets large, S2, approaches 
the area of the circle and nc, approaches the circumference, so we have justified the 
Nine Chapters claim that the area of a circle is one-half the product of its radius and 
circumference. 
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/ \~~~~~~~~~~~C n/2 / 

\ an c/2 

FIGURE 7 
The calculation of ir. 

Taking r = 10, Liu Hui carries out the calculations, keeping 6-place accuracy, up to 
n = 96, hence approximating the circle by a 192-gon. He concludes that 

3.1410< 7T< 3.1427, 

and suggests that for practical calculations it should be enough to use 7T 3.14. Either 
Liu or some interpolating later commentator carried the computation as far as 
n = 1536 and obtained the approximation T = 3.1416. See [13] and [28] for treat- 
ments of the intricacies of this kind of calculation. [13] gives a translation of Liu Hui's 
text. 

If we compare this treatment to Archimedes' in Meassurement of a Circle, the 
similarities are striking, although the differences are also interesting. Archimedes, of 
course, included a formal proof by the method of exhaustion required by the 
conventions of Greek geometry. However, the subdivision method and the inductive 
calculation are essentially the same. Archimedes obtained his upper bound by 
considering circumscribed polygons, instead of Liu's clever method of using only 
inscribed polygons. Archimedes used 96-gons to obtain his famous estimate 

3 
10 

< r < 3 - or 3.1409 < -g < 3.1428. 71 7, 

Two centuries later Zu Chongzhi (429-500 A.D.) carried Liu Hui's approach 
farther. Using a polygon of 24576 sides, Zu obtained the bounds 3.1415926 < -g < 
3.1415927. See [13] and, for a different view, [28]. In addition, Zu recommended two 
rational approximations for 7T: Archimedes' value of 22/7, and the remarkably 
accurate 355/113 ; 3.1415929. 

Zu's method for arriving at his rational approximation 311 for -T is not known. One 
line of reasoning would be to start with Zu's value of 3.1415926 and the approximation 
22 3.487, itoa 
7 =73' 3.1428571, which is slightly too large, and ask for a fraction which, when 
added to 3, would give a better approximation than 7 does. It is easy to see that the 
fractions we should check are those of the form 7k . We then tiy to find k so that 

7 7k1 .1428571 - .1415926= .0012645, 

19+7 .0012645, 49k + 7 = 791. 
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The solution k = 16 gives the rational approximation 3 j163 = 3. For another possible 
approach, see [17]. 

Zu Chongzhi's approximation of w was not bettered until al-Kashi of Samarkand 
computed w to 14 decimal places in the early 15th century. The rational approxima- 
tion 355/113 was not discovered in Europe until the late 16th centuly. 

The Volume of Pyramids 

Chapter Five of the Nine Chapters gives correct formulas for the volumes of a 
number of pyramidal solids. For example, the volume of the chu-ttwng, a truncated 
rectangular pyramid illustrated in FIGURE 11, is correctly given as 

h- (2ab + ad + bc + 2cd). 

Did you know that formula? From it follows the volume of a rectangular pyramid (put 
c = d = 0), a truncated square pyramid (put a = b, c = d), and a rectangular wedge 
(put d = 0). 

Liu Hui gives justifications for these formulas based on dissection arguments and a 
remarkable limit argument. I will mostly follow the translation and discussion in [30]. 
Liu's argument uses three special solids: a qiandu, which is a triangular prism, a 
yanrgma, which is a rectangular pyramid whose vertex is above one corner of its base, 
and a bienao, which is a tetrahedron with three successive perpendicular edges. See 
FIGURES 8, 9, and 10. 

Liu starts with the case of a cube, which he dissects into three congruent yangmna, 
to conclude that the volume of a regular yangmna is 1/3 the volume of the cube. See 
FIGURE 8. Since a yangnma and a bienao fit together to make a qiancld, which is 1/2 of 
the cube, the volume of the bienao must be 1/6 the volume of the cube. Alterna- 
tively, we could get this result by dissecting the yangrna into two congruent bienao. 

FIGURE 8 
Dissecting a cube and a qia'tidu. 

Now suppose that instead of a cube, we start with an a x b x c rectangular box. We 
can still dissect it into three yangmiia, but now these yangma will have 3 different 
shapes, so it is not clear that their volumes are equal. We can also dissect a yangmna 
into two bienao, or assemble a bienao and a yangma to make a qiandnt, but again, 
the bienao have 3 different shapes, and it is not clear that their volumes are equal. 
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b 

:b~~~~~~~~ 

C 2C 

Ya Yb Yb 

Bb "~. , 

FIGURE 9 
Three types of yangma and bienao. 

Using the notation in FIGURE 9, what the dissections do show is that 

Ya + Yb + Y, = abc 

Ya + Ba = abc/2 Ya = Bb + Bc 

Yb + Bb = abc/2 Yb = Ba + Bc 

Y + Bc =abc/2 Yc=Ba+Bb 

However, this does not give enough information to evaluate the volumes. 
Liu proceeds to prove that Yb = 2 Bb (and similarly Ya = 2 Ba, Yc = 2 B), which 

does allow us to conclude that the volume of each yangmna is abc/3 and that of each 
bienao is abc/6. His method is shown in FIGURE 10. Dissect Yb at the midpoints of its 
sides into a rectangular box, 2 qianclu, and two half-size copies of YI, (call them Yb). 
Similarly, dissect Bb into 2 qiandu and 2 half-size copies of Bb (call them B'). Since 
the box and 2 qiantdu have twice the volume of 2 qianclu, we only need to show that 

FIGURE 10 
Dissecting a ya'ngrma and a bieao. 
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Yb' = 2 B,. Liu notes that these new figures together have 1/4 the volume of the 
original figures, since the two small yangma and bienao fit together to form two 
qiandu whose total volume is abc/8. Repeat the dissection on each of the new 
figures, and continue. At each stage the volume we have not yet accounted for is 1/4 
that of the previous stage. Liu expresses what happens in the limit as follows: 

The smaller they are halved, the finer are the remaining dimensions. The 
extreme of fineness is called minute. That which is minute is without form. 
When it is explained in this way, why concern oneself with the remainder? 
[30, p. 173] 

This is not a modern limit argument, of course. Liu seems to be saying that if we cut 
the figures into smaller and smaller pieces, we will come to a point where the pieces 
are so small that they no longer have form or volume. (The terms translated as 
'minute' and 'form' are philosophical terms from the Tao Te Ching.) Still, we 
recognize the limit idea, and the recursive dissection argument has a delightful 
elegance. For some of the philosophical issues, see [7], [16], and [30]. For a 
comparison to the Greek proof in Euclid's Elements, see [4]. 

Knowing the volume of a yaigmna, we can now derive the volumes of the other 
solids by dissection. For example, let's verify the formula for the volume of the 
chu-turg. Dissect it as in FIGURE 11 into a box L, four qiandu of two different shapes 
Qa and Qb' and four yangrna Y. If we do this to six copies of the chnt-tung, we have 

6L + 12Qa + 12Qb + 24Y. 

h 
2x 

d+ d 

h 

h~~~~~~~~~~~~~~~ 

a 

+ 

h~~~~ 

2 x ---- -- 

FIGURE 11 
The volume of a chu-tunig. 
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Now reassemble these, as in FIGURE 12, into 

two boxes of volume hcd; 2 L 
one box of volume had: L + 4Qb 

one box of volume hbc: L + 4Q, 

two boxes of volume hab: 2L + 8Q + 8Qb + 24Y. 

Notice that for the last step we need to replace some of the Y1, yanggma with yangma 
of other shapes, but this is allowable since we have shown that these yangma all have 
the same volume. 

Finally, Liu derives the volume of a cone from the volume of a square pyramid, and 
the volume of a truncated cone from the volume of a truncated square pyramid, by 
using what we know as "Cavalieri's principle," after Bonaventura Cavalieri 
(1598-1647). We can state this principle as follows: 

The volumes of two solids of the same height are equal if their planar 
cross-sections at equal heights always have equal areas; if the areas of the 
planar cross-sections at equal heights always have the same ratio, then the 
volumes of the solids also have this ratio. 

Liu inscribes the truncated cone, for example, in a truncated square pyramid of the 
same height, and then says that since each cross-section consists of a circle inscribed 
in a square, the ratio of the volumes of the truncated cone to the truncated pyramid 
must be in the same ratio as the area of a circle to its circumscribed square, i.e., T/4 
[7]. 

The Volume of a Sphere 

Recall that problem 4.24 of the Nine Chapters gave the volume of a sphere as 9d3. 
Liu points out that this is incorrect, even using the inaccurate value of 3 for v. He 
explains the error as follows. Let a cylinder be inscribed in a cube of side d, and 
consider the cross-section of this figure by any plane perpendicular to the axis of the 
cylinder. The plane will cut the cylinder in a circle of diameter d, inscribed in a 
square of side d. The ratio of these areas is vr/4. Since this is true for each 
cross-section, the same ratio must hold for the volumes, so that the volume of the 
cylinder is 4d3. Now consider the sphere of diameter d inscribed in the cylinder. If 
we assume, incorrectly, that the ratio of the volume of the sphere to the volume of the 

cylinder is also v/4, then we get that the volume of the sphere is 16 d3, which is the 
Nine Chapters result (using v = 3). 

How do we know that the ratio of the volumes of the sphere and cylinder cannot be 
v/4? Liu's ingenious argument is as follows. Inscribe a second cylinder in the cube, 
with axis orthogonal to that of the first cylinder, and consider the intersection of these 
two cylinders. Liu called this intersection a "double box-lid." See FIGURE 12. Since the 
sphere is contained in both cylinders, it is contained in the box-lid. Moreover, 
consider any cross-section of this figure by a plane perpendicular to the axis of the 
box-lid. The cross-section of the sphere will be a circle, inscribed in the square which 
is the cross-section of the box-lid, so again the ratio of the areas is v/4, and since this 
is true for all cross-sections, the ratio of the volumes of the sphere and the box-lid 
must also be v/4. Now the box-lid is certainly smaller than the original cylinder, so 
the ratio of the volumes of the sphere and the cylinder must be strictly less than v/4. 
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FIGURE 12 
Cross sections of a sphere in a double box-lid in a cube. 

This lovely argument using Cavalieri's principle shows that the Nine Chapters 
formula is wrong, but in order to use it to find the correct volume of the sphere, we 
would need to be able to find the volume of the double box-lid. Liu tried to do this, 
but could not. He recorded his failure in a poem, translated by D. B. Wagner as 
"The Geometer's Frustration:" 

Look inside the cube 
And outside the box-lid; 
Though the diminution increases, 
It doesn't quite fit. 

The marriage preparations are complete; 
But square and circle wrangle, 
Thick and thin make treacherous plots, 
They are incompatible. 

I wish to give my humble reflections, 
But fear that I will miss the correct principle; 
I dare to let the doubtful points stand, 
Waiting for one who can expound them. [29, p. 72] 

The wait turned out to be two centuries, and the person Liu waited for was Zu 
Gengzhi, the son of Zu Chongzhi. Stories associated with Zu Gengzhi are reminiscent 
of those told about Archimedes and many mathematicians since then. For instance, 
"he studied so hard when he was still very young that he did not even notice when it 
thundered; when he was thinking about problems while walking he bumped into 
people." [15, p. 82] 

Zu Gengzhi argues as follows. Consider one eighth of the double box-lid inscribed 
in the cube of side r = d/2. See FIGURE 13. If a plane is passed through this figure at 
height h, it intersects the cube in a square of side r, and the box-lid in a square of 
side s. By the gou-gu theorem, r2 _ s2 = h2. Hence the area of the gnomon outside 
the box-lid is h2. 
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Now Zu Gengzhi considers another solid of height r whose cross-section at height 
h is h2: an inverted yangmTa cut from a cube of side r. See FIGURE 13. The part of the 
cube outside the box-lid, and this yangmna, have all their corresponding cross-sections 
of the same area. Zu then states his version of Cavalieri's principle in verse: 

If volumes are constructed of piled up blocks [areas], 
And corresponding areas are equal, 
Then the volumes cannot be unequal. [29, p. 75] 

/~~~h voum outsid a bo-i is Caai.-euvl to a ya/gma 

/ h \ /, 0 0 X , g^~~~~.. .......... X , , . ... . ... . ................................. / ... / . \ \ / 0, , ,: .. ,.. . . . . . . . . . . . . . . . . . . . . . 

A~~~~~~~~~~~..'.-.,' ..... ,'- "---"'-""""""--'"'''''"'-""'."..X../ 
the same, thevolumeinsidetheboxlidmustbe.. .. ..3... Putting the eight pieces 

toge , w mt be t d o 

the|cube c i .d.. Remembering s t t the s 

~/4 of The doulue box-lid,e finallyidiget theercorrectleformula forthevolme f 

sphere of diameter d: 
V= d3 ,3 

Following Liu, Zu ends his discussion with a poem, "The Geometer's Triumph:"' 

The proportions are extremely precise, 
And my heart shines. 
Chang Heng copied the ancienlt, 
Smiling on posterity; 
Liu Hui followed the ancient, 
Having no time to revise it. 
Now what is so difficult about it? 
One need only think. [29, pp. 76-77] 

One could argue that Liu Hui did not use the full power of Gavalieri's principle, 
since he only applied it to the situation of one figure inside another, where the 
cross-sections were circles inscribed in squares. But certainly Zu Gengzhi gave a clear 
statement of the principle and used its power more than a millennium before 
Cavalieri [14]. 
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There was another precursor, of course. Archimedes had calculated the volume of a 
sphere, and in Proposition 15 of The Method, he calculated the volume of the 
perpendicular intersection of two cylinders of the same radius. The argument for 
Proposition 15 is in the part of The Method which has not survived, but it is not 
difficult to reconstruct the reasoning from other demonstrations earlier in the book. 
Archimedes thought of volumes as made up of planar slices and balanced them on a 
lever against the slices of other volumes. It is an extension of Cavalieri's principle. For 
a general discussion of the use of versions of Cavalieri's principle in Greek geomietry, 
see [10]. 

Conclusion 

After the theoretical phase of Chinese mathematics in the 3rd through 5th centuries, 
represented by Liu Hui, Zu Chongzhi, and Zu Gengzhi, proofs and justifications 
began to be less important. Although the work of Liu Hui was still taught in the 
official School for the Sons of the State, instruction began to emlphasize rote learning 
of methods rather than justifications. Liu's diagrams from the comlmentaiy on the 
Nine Chapters and arguments fromi the Sea Island Manual, and Zu Chongzhi's work, 
were lost. The next, brief flowering of creative mathematics in China did not happen 
until the 13th century, with mathematicians like Qin Jiushao, Li Zhi, Zhu Shijie, and 
Yang Hui. After the thirteenth century, Chinese miathemiatics declined again until the 
period of contact with the West. 

It is interesting to speculate why Chinese mathematics, with such a powerful 
calculational base and such a strong theoretical start, did not develop a coherent, 
ongoing mathemiatical tradition. Martzloff [17] and Swetz [25] review a number of 
possible reasons: emphasis on practical applications, rote learning, and reverence for 
established ideas which stifled creativity, uneven state support, and low social status 
accorded to mathematicians compared to scholars in the humanities. 

Nevertheless, the remarkable achievements of Chinese mathematics in its first 
golden age are worthy of our interest and admiration. 

Acknowledgment. I vish to thank the mathematics departmenit of the University of Colorado at Boulder 
for their hospitality during the writing of this paper, and Victor Katz, Ranjan Roy, and Frank Swetz for 
suggestions which have improved its quality. 

Note. [8] and [21-27] contain very accessible introductions to Chinese mathematics. [15] and [17] are 
comprehensive modern histories of Chinese mathematics which make extensive use of Chinese research. 
[18] and [19] are older histories which are still good reading. 
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1. Introduction 

The old problem of trisecting angles by means of ruler and compass, unsolvable in its 
original form, has generated, throughout the history of mathematics, many interesting 
contributions, including special "tools" to be used either for solving the problem 
exactly or for finding ingenious approximations (see, e.g., [5]). Contrary to popular 
belief, several Greek geometers considered tools other than straightedge and compass 
for this purpose. Among these tools were the spiral of Archimedes (ca. 225 BC), the 
quadratrix of Hippias (ca. 425 BC), and the conchoid of Nicomedes (ca. 240 BC). All 
these curves, originally given as geometrical loci, can be considered, using today's 
language, as examples of solutions of elementary functional equations, with metric 
equalities defining the curves as loci. 

Our aim in this paper is to review these curves from a functional equations point of 
view and to see to what extent the trisecting property, which they all have, character- 
izes them. In doing so, we find families of trisecting curves that we have not 
encountered elsewhere. 

This note also has a pedagogical purpose. The interest and beauty of working on 
geometrical problems by means of functional methods strengthens the link between 
calculus and geometry. 

2. The Archimedean Spiral 

Archimedes (ca. 225 BC) introduced his celebrated spiral for the purposes of squaring 
the circle and multisecting angles. We can describe the Archimedean spiral easily 
using polar coordinates: 

r= a0, (1) 
with a a constant of proportionality (see FIGURE 1). 

Given a circle of center 0 and radius a, the distance from a point P of the spiral to 
the center equals the length of the arc AB on the circumference corresponding to the 
central angle 0. So Archimedes was able to multisect any angle AOB by dividing 
(with euclidean tools) the segment OP into n equal parts 0P1, P1 P2.P, p-IP1, 
where Pn = P, tracing the circles with 0 as center and OPI, OP2, . . O, 0P, - I as radii 
and cutting the circles with the spiral at the points T1, T2,. .., T 1. Then 
OT1, 0T2,..., OT>,_l divide the initial angle Z AOB into n equal parts (in FIGURE 1, 
n = 3). 

Note that the point Q of the spiral r = a O obtained when 0 = -r/2 is such that 
OQ = a * ir/2, so the rectangle of base 2a and height OQ has area w a2; from this, the 
squaring of the circle of radius a is obtained. 
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Q 

0 a ~~~~A 

FIGURE 1 
An Archimedean spiral trisecting an angle. 

Note also that the sum of two Archimedean spirals r = aO and r = bO is another 
Archimedean spiral: aO + bO = (a + h)W. This has an interesting geometrical meaning: 
the problem of squaring the circle of radius a + b could be solved either by producing 
the spiral r = (a + b)0 or by using the spirals r = aO and r = bh. The following 
definition is motivated by the preceding properties of the spiral. (In what follows, DR + 
denotes the set of nonnegative real numbers.) 

DEFINITION. For fixed n > 2, an n-spiral function is a function F: 2 -> + 
satisfying the following conditions for all a, b, 0 ? 0: 

(i) F(a + b, 0) = F(a, 0) + F(b, 0); (ii) F(a, n) = nF(a, 0) 

The following theorem characterizes n-spiral functions. 

THEOREM 1. Given n ? 2, a function F: R2 ---D + is an n-spiral ftnction if and 
only if F can be written in the form 

F(a,0)=ap(O0), (2) 

twhere (p(O) = 0 and po is a solution of the functional equation 

(P ( r. ( ) 1 for x E R + . Ell ) 

Note. The general solution of (E,,) can be obtained by defining S0(x) arbitrarily on 
the interval [1, n), and extending to DR+ by repeated use of (E,,) itself (see [8]). 

Proof: If F is an n-spiral function then, by condition (i), for fixed 0 the function 
f(a) = F(a, 0) satisfies the classical Cauchy equation f(a + b) =f(a) +f(b). Since f 
is bounded from below by 0 on its domain, it follows that f(a) =f(l)a (for a proof of 
this implication, see [1]). If we let 0 vary again we will obtain that F(a, 0) = F(1, 0) a, 
i.e., equation (2) holds with So(O) = F(1, 0). By (ii), SD must satisfy S0(0) = 0 and (En). 
The converse is obvious. [ 
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COROLLARY 2. Let F be an n-spiralfunction, represented in the forn, (2). Then, for 
any fixed a > 0, the plane curve given in polar coorclinates by r = F(a, 0) solves the 
n-rnultisection of any angle. 

COROLLARY 3. Suppose that F is an n-spiral function both for n = 3 and for n = 5, 
and that F is continuous or monotonic. Then F is the Archimedean spiral F(a, 0) = a 0. 

Proof Theorem 1 and the facts that 

S(3)- ( 3D( 0 and S 5 5 (0) 

imuply that po(3`5`10) = 3"1 5(0 ... ) for all n, m E Z. Since the set {3" * 5... I n, m E 7} is 
dense in DR+ (see, e.g., [11] for a proof of this fact), the corollary follows from the 
continuity or monotonicity of F. [1 

Thus we see that a large variety of spirals can be used to trisect any angle (this is 
Theorem 1 with n = 3). But as soon as one wants to do both trisecting and 
"quintisecting" (or "multisecting") then the classical Archimedean spiral is the right 
tool in the world of n-spiral functions. The following corollary generalizes these 
observations. 

COROLLARY 4. Let a and b be two positive integers such that log a/logb is 
irrational. If F is a continuous or monotonic n-spiral function for both n = a and 
n = b, then F is the Archimnedean spi;ral. 

Proof The irrationality of log a/log b implies that the set {a"b.. I n, mi E Z} is 
dense in DR + and the same argument as above applies. [ 

3. The Quadratrix of Hippias 

Given a circle with center (0, 0) and radius R, Hippias wanted to find a function f for 
which (see FIGURE 2) 

f( a) - a whreta fa) _t b_ 

f (b) were tan a and tan ,3- f(b) (3) 

The reason for introducing such a curve (function) was geometric: using (3) it is 
possible to produce any rational proportion of angles by taking the same rational 
proportion of lengths along the vertical OR (the latter task could be performed using 
euclidean tools). We show below that such functions exist. 

To be precise, we look for a continuous strictly decreasing fuinction f: [0, K] -> [0, R] 
such that f(K) = 0, f(0) = R and, for all a, b in [0, K), equation (3) holds, that is, 

f( a) arctan (f( a) /a) (4) 
f(b) arctan(f(b)/b) 

(We use the principal value of the arctangent, i.e., - r'/2 < arctan(x) < 'n/2.) 
The continuity of f at 0 (from the right) implies that limr O+ f(a) = R. As a 

consequence, i f(a) 7r 
lim- arctan-a 2 ,1-0+ a ) 2~7 

since f(a)/a tends to + oo and the principal value of arctan t tends to 7n/2 as t tends 
to + oo. This agrees nicely with the meaning of a in equation (3), and in FIGURE 2. So, 
if in equation (4) a tends to 0, we obtain 

f(b) = 
2 

arctan f(b) (5) 
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R 

0 a b 2R 

7r 

FIGURE 2 
The quadratrix of Hippias. 

It will be easier to determine the inverse function f' : [0, R] [0, K ] of f. If an f 
satisfying the above conditions exists, then its inverse function ft1 exists, is continu- 
ous and strictly decreasing, and satisfies ft1(0) = K, f'(R) = 0, and (from (5) with 
y =f(b)), 2 R y 

gs =-arctan tf 

This determines ft' explicitly on (0, R]: 

f' (y) =ycot( 2R) 

which implies that f' (R) = 0. By definition, f' (0) = K. If f' is continuous at 0, 
then K (O)= lim (?J( li)Ycot(2R) 

2R 
lim cos y7r Y 

-tj/(2 R) = 2R 

17y -- + 2 R) sin (w y/(2 R)) 7T 

(The last equality holds because lim, , 0 t/sin(t) = 1.) So we see that fJ- is continu- 
ous at 0 (and hence f is continuous at K), only if K= 2R/7w. 

Conversely, ft [0, R] [0, K], defined by 

f Y()j2_R (6) 
7T 1 if y = 0 

is continuous, at 0 as we have just seen and on (0, R] because the cotangent function 
is continuous on (0, l/2]. Moreover, we have ft'(0) - 2R/7 = K, f-i(R) = 0, and, 
as substitution shows, - rctan x x arca ^f 

Y arctan (y /f(y)) 

for all x, y E (0, R]. But this equation is clearly equivalent to (4). The only thing we 
still have to prove is that ft', and thus f, is strictly decreasing. Since ft1 is 
differentiable on (0, R], we calculate 

(o 2K sin2( y/2 R) 
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FIGURE 3 
n-secting an angle vith the quadratrix of Hippias. 

this is negative on (0, R] because 

Cos si 's iry 
(7y < 7T 

C0(2 R sin(2R) 2 '1 RR) 2R 

So we have constructed the required f-', and thus also f. 
This function can solve the quadratutra circuli. However, we will use the quadratrix 

of Hippias not for squaring the circle but for trisecting the angle, a problem that had 
already been studied by Dinostratus, who lived nearly a century before Hippias. 

The function f multisects any angle (see FIGURE 3): Given an angle A in the interval 
(o, -2), consider XA in [o, 2R such that tan A =f(XA)/XA. If we divide the segment 
joining (XA, 0) with (XA, f(XA)) into n equal pieces, then the horizontal line y - f(=A) 

intersects y =f(x) at a point (x, f(x )) with f(x) =f(xA)/r and the line 
y f( x?f) forms an angle of A/n radians with the x-axis, according to (3). Thus we 
see that to n-sect angles, we need only the particular case /3 = a/n of equation (3), 
that is, f(b) =f(a)/ln or b =f'-(f(a)/'n). This motivates the following definition: 

DEFINITION. Give> n > 1, arz 'n-quadratrix is a bhectivefitrnction f: [0, K] -> [0, R] 
sttch that f(O) = R, f(K) = 0, and 

! arctaLn (f(x) = arctan ( f(x)/n . (7) 

Note that equation (7) is the particular case a = x, b =f-'(f(x)/n) of (4). 
Following is a necessaiy and sufficient condition on n-quadratrix functions. 

THEOREM 5. A bijective function f: [0, K] -> [0, R] is an n-quadratrix function if 
and only if there exists a function cp that satisfies equation (E,,), cp( R) = 7T/2, and 

f-1(U>{Y) cot4o( Y) ify 7 O, 
K ~ify=0 

Proof With f(x) = y E [0, R), equation (7) becomes 

-arctan f( )Y ) = arctan ( y/nii J 

This content downloaded from 143.207.2.50 on Mon, 29 Jul 2013 02:18:56 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VOL. 71, NO. 3, JUNE 1998 187 

In other words, the function 4c( y) = arctan ( y/f'( y)) must satisfy the functional 
equation (E,,): cp(y/n) = cp(y)/n. Thus f-'(y) = y cot(c4(y)) for y E [0, R), while 
f(K) = 0 means that f-'(0) = K. El 

Note that, when cp(y) = - y/22R, we obtain the quadratrix of Hippias and, as in 
Corollaiy 3, if a function, continuous or monotonic on [0, K ], is at the same time both 
a 3- and a 5-quadratrix (or a 2- and a 3-quadratrix, as mentioned in Corollaiy 4), then 
the function is the quadratrix of Hippias. Thus a situation similar to that of the 
Archimedean spiral applies to the classical quadratrix. 

4. The Conchoid of Nicomedes 

Given a positive constant M > 0, the point 0 = (0, 0) and the horizontal line y = a 
with a > 0, the conchoid of Nicomedes is defined as the set of points P = (x, y) in the 
plane such that y > a and the distance from P to the intersection of the lines OP and 
y = a is M (see FIGURE 4). Since the point of intersection has coordinates (ax/y, a), 
we must have a9 

(x_ y ) + (y -a) =M2; 

this yields the cartesian equation (y - a)2(x2 + y2) = M2y2. 

Y -- - . . .. ......... . . , ,, ,, P= (x, y) 

0 ax/y x 

FIGURE 4 
A generic point in a conchoid of Nicomedes. 

Nicomedes discovered that, given an angle A, say in (0, 2X), one can consider the 
associated conchoid to A with a = 1, M = 2 K, and K = 1/cos A (see FIGURE 5) and 
use this to trisect the given angle A: The angle A is located in the first quadrant, 
opening out from the y-axis, K is determined, then the conchoid is drawn and the 
line BC determines the point C such that OC forms an angle of A/3 with the y-axis. 

It is easy to see why this works. Since OB = K and BP = DC = 2 K, we have BC = DC 
cos a = 2 K cos a. Applying the law of sines to the triangle OBC we obtain OB/sin a 
- BC/sin ,3. Thus 

sin /3 = BCsin a/OB = 2 K cos a sin a/K = 2sin a cos a = sin (2 a), 
wlhence 3 = 2 a and therefore a = A/3. 

One observes in this case that, for each angle, the trisection is obtained using the 
conchoid associated to that angle. Can we find a single function f-maybe after 
replacing the constant 1 or a by another function g-so that, by a similar construc- 
tion, we can trisect any angle? To answer this question we introduce the following 
definition. 
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A 2K D B 
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0 ' 
FIGURE 5 

The conchoid of Nicomedes. 

DEFINITION. Two continuous functions f, g: (0, + oo) > (0, + oo) forme a trisecting 
cotuple iff(x)/x is a biection from (0, + oo) onto (F3, + oo), g(x)/x is a bijection from 
(0, + oo) onto itself, ancd, for every A in (0, 2p), there exists a unique point XA > 0 stuch 

that the line y = x makes an angle of A/3 (in radians) with the y-axis, and the 

line y-= g(xA)x mnakes an angle A with the y-axis. (See FIGURE 6.) 

The assumption that f(x)/x maps (0, +oo) onto (F3, +oo) is natural because, for 
all A in the interval (0, -i/2), we want to have a point XA such that 

f(XA) Ct(A) >ot( 7)=) 7Y 
XA 

Similarly, g(x)/x shotild attain all values in (0, oo), as does cot A. 
We proceed to characterize trisecting couples. If (f, g) is such a couple, then 

consider the (well defined) function qi: (0, f) > (0, + oo), defined by q,(A) = XA. By 
definition, one has the relations 

g (( A))_ = cotA and f(pP( A)). cot A (8) 
qj( A) ~~qi( A) co 3 8 

f 

?XA 

FIGURE 6 
A general tiisecting couple of functions. 
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From (8) and the bijectivity and continuity of g( x)/x from (0, + oo) onto (0, + oo), it 
is immediate that q, must also be bijective and continuous. Thus tV-1 exists and (8) 
yields g(x) =xcot(i-'( x)) and f(x) =xcott ( )). (9) 

It is easy to check that if C,- 1 is an arbitraiy continuous bijection from (0, + oo) onto 
(0, r-/2), then the functions f and g given by (9) constitute a trisecting couple. We 
have proved the following theorem. 

THEOREM 6. A pair of fitnctions (f, g) is a trisecting couple if and only if there 
exists a continuous bijection -1 fromn (0, + oo) onto (0, T/2) such that (9) holds. 

f 

0 
FIGURE 7 

An example of a trisecting couple. 

For example, when g 1 we get f(x) = x cot ( 
arct3a 

X). see FIGURE 7. 

Thus there are interesting collections of trisecting couples. Other (non-Greek) 
trisecting curves, such as the trisectrix of Catalan or Tchirnhausen's cubic, Ceva's 
cycloid, and others, may be found in the literature (see, e.g., [5,9, 10, 12]). 
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This note had its genesis in the early 1980s, when the third author was teaching at a 
community college in California and was asked a version of the following question by 
a student: 

Given a standard analog (two-hand) clock, are there times when the two 
hands could be interchanged to obtain another valid time (besides the 
obvious times when the two hands are at the same position)? 

It was not hard to work out an answer to the question (see below), but the problem 
suggests many similar, and harder, questions. The question sat for years until the first 
author suggested it to one of his undergraduate students, the second author. 

The most obvious of these questions regards a three-hand clock: Given a standard 
three-hand clock (with hour, minute, and second hands), are there times when the 
hands could be permuted in some way to obtain another valid time? Again, overlap- 
ping hands provide trivial solutions. We examine this question in the second section; 
in the last section we consider imperfect clocks. 

The two-hand problem also appears in [1, 2, 3,4], with [3] giving the solution we 
give, [2,4] giving algebraic solutions, and [1] giving hints towards the solution below. 

The two-hand clock Let us examine first the case of a two-hand, perfectly 
accurate, twelve-hour clock. As an example, take the time 2:00, when the hour hand 
points at 2 o'clock and the minute hand points at the 12 o'clock position. Permuting 
the hands, we do not get a valid clock position, since the hour hand pointing directly 
at 12 forces the minute hand to also point to 12. We notice that the position of the 
hour hand determines the position of the minute hand, so we can write the minute 
hand position as a function of the hour hand position. If we use the 60-minute scale 
on the clock face (so we measure the position of each hand as a real number in the 
interval [0, 60)-this is the usual scale for the minute hand, but not for the hour 
hand), and use h to represent the hour hand and n(h) the minute hand, we have: 

rn(h) = 12h - 60[h/5] 12h (mod60), 

where [xL means the greatest integer less than or equal to x. We will often indicate 
1 90 
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hand positions as ordered pairs (x, y), where x is the position of the hour hand and y 
the minute hand. 

To answer the original question, we must find values of h for which (m(h), h) is a 
valid clock position, i.e., for which h = m(n(h)). The last equation can be solved 
algebraically; this was done in [4], which includes an exhaustive list of all solutions. 
However, there is a nice way to "see" the answer (which appears in [3]): The point 
(a,b) in the plane represents one of the hand positions we are looking for if and 
only if (a, b) and (b, a) are both on the graph of the function m(h), which has [0, 60) 
for its domain and whose graph is shown in FIGURE 1. 

m 
60- 

50- 

40- 

30- 

20- 

10 

0 
10 20 30 40 50 60 

FIGURE 1 
The graph of m(h). 

m 
60- 

50- 

40- 

30- 

20- 

O t -I I 1 1 1 1 1 h 
10 20 30 40 50 60 

FIGURE 2 
mn(h) and its reflection about the line m = h. 

The point (b, a) is on this graph if and only if (a, b) is on the graph (ui(h), h), 
which is the reflection about the line n = h of the graph above. Overlaying the two 
graphs, we have the graph shown in FIGURE 2, and the intersections are precisely the 
points we are looling for. There are 143 of them (the apparent intersection at (60,60) 
is the same as the one at (0, 0)); as mentioned above, they are catalogued in [4]. The 
11 intersections that lie on the line m = h are the trivial solutions where the hands are 
at the same position, so there are 132 non-trivial solutions. 

Before discussing the three-hand clock, we mention one property of the greatest 
integer function that we use frequently: If r is a real number and a an integer, then 
[r + a] = [rj + a. 

Three-hand clocks Next we consider a perfectly accurate three-hand clock. Our 
method of graphical intersections may not be so useful in the three-hand case. In this 
case, the lines representing the time are in three dimensions, and non-parallel lines 
may not intersect. 

As with the minute hand, the position h of the hour hand determines the position 
of the second hand on our clock, via the function 

s(h) = 720h - 60[12h] 720h (mod60). 
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With the additional hand on the clock come additional possible permutations of the 
hands. We represent hand positions as ordered triples (x, y, z), with z. the position of 
the second hand. There are six possible permutations of the hands: 

(1) (h, m(h), s(h)) (2) (in(h), h, s(h)) (3) (h, s(h), in(h)) 
(4) (s(h), m(h), h) (5) (s(h), h, n(h)) (6) (n(h), s(h), h) 

The first is the normal position of the hands and always represents a valid time. The 
only obvious value for h that gives a valid time for any of the other permutations is the 
trivial one h = 0, or 12:00:00. Are there others? 

Two-hand stvitches. The second permutation is just the hour hand-minute hand 
switch discussed above (i.e., h = m(n(h))), with the additional requirement that the 
two hands have the second hand in the same position: s(h) = s(n(h)). We examine 
the tables in [4] and see that there are no such solutions other than those 11 times 
when h = ui(h); that is, the hour and minute hands overlap. 

The third permutation leaves the hour hand alone, and since its position determines 
the other two, the only solutions here are when s(h) = mn(h); i.e., once again, when 
the hands overlap. These are not particularly interesting cases. It is not hard to find 
them algebraically; we simply note that the second hand crosses the minute hand 
almost once a minute (59 times every hour, to be precise), so there are 12 59 = 708 
such overlaps per rotation of the hour hand. 

The fourth permutation (and the last two-hand switch to consider) is harder, though 
one might notice that mathematically this is the same as the second permutation, with 
the roles of s(h) and m(h) reversed. We must simultaneously solve h = s(s(h)) and 
rm(h) = rn(s(h)). Here, however, there are 7202 - 1 = 518399 solutions to the first 
equation; compiling a table and looking in it for solutions to the second didn't sound 
like much fun. Note that the second hand crosses the hour hand 12 60 - 1 = 719 
times in one revolution of the hour hand, so there are at least that many solutions. 

We solve m(h) = m(s(h)) first. For convenience, let a = h/5 (a ranges from 0 to 
12). We have, from routine calculations, 

m(h) = rn(s(h)) <> 12h - 60[h/5J = 12(720h - 60[12h]) 
- 60[(720h - 60[12h])/5] 

[= L144h - [hl/5]] = 719h/5 

[ L720a - [ aJ] = 719a. 

Clearly, 719a must be an integer for this last equation to be true; conversely, if 719a 
is an integer, then [720a - [a]] = [719a + a] - [a] = 719a + [a] - [a] = 719a. 
Thus the last equation holds if and only if 719a is an integer. 

So we need a in [0, 12) such that 719a is an integer. As 719 is prime, a must be of 
the form n/719 for some integer n satisfying 0 < n < 12 719 = 8628. Now we check 
which of these 8628 solutions to m(h) = mn(s(h)) also satisfies h = s(s(h)). Let a = 719 

(0 < n < 8627) be such a solution. With some manipulation, the requirement h = 
s(s(h)) reduces to 60[12 720h] = (7202 - 1l). Substituting 5a for h in this equation 
gives 

~~~ 1=5n5 721'n 60 12 720 79 =(7202 - 1) 79 <> [12 720C19 72 

The right side of this last equation is an integer only if 12In. There are 719 multiples 
of 12 in the interval [0,8628); as we already know, there are at least this many 
solutions; this is all of them. Once again, there are no non-trivial solutions. 
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This hand-switch can also be approached using Mathematica to do some of the 
arithmetic, but Mathenatica doesn't save as much work on this permutation as it does 
on the cyclic permutation below. 

Three-hand cyclic perimutations. The two permutations we haven't considered yet 
are those that move all three hands. It will turn out that we need to solve only one of 
these; the other will be a consequence. Consider the fifth permutation above. If 
(h, m(h), s(h)) represents a valid time, then the requirements for (s(h), h, -n(h)) to 
also represent a valid time are h = m(s(h)) and n(h) = s(s(h)). 

We were getting tired of doing mod 60 algebra by hand at this point, so we asked 
Mathematica for help. Mathematica was not a big fan of non-prime moduli for 
modular arithmetic either, but we finally settled on the Reduce command, handling 
the modulus ourselves. This command simplifies equations, attempting to solve for the 
variable(s) we specify (h in the example below); the equations generated by Reduce 
are equivalent to the original equations and contain all possible solutions. If we define 
rn(h) = 12h and s(h) = 720h, then the command 

InEl] :=Reduce[m[s [h] ]-60k == h && m[h] == s [s [h] ]-60 j, h] 

Out[l] = 8639 j=518388 k && h= (60 k) /8639 

does the trick: Keeping in mind that j and k must be integers, and checking (again 
with Mathematica) that 518388 and 8639 are relatively prime, we find that 5183881j 
and 86391k. Since 86391k, the equation h = 60k/8639 reduces modulo 60 to h 0. 
In other words, the only solution is the trivial one, where all three hands overlap at 
12:00:00. 

Why don't we have to consider the remaining permutation? Let's say we had a 
solution for the sixth permutation (n(hi), s(h),h); that is, some value ho such that 
s(h0) = mn(m(ho)) and h0 = s(6n(h0)). We claim that then h10 is a solution for the 
permutation we considered above! We must show that h0 = n(s(ho)) and in(ho) = 
s(s(h0)). The first calculation is as follows: 

ho =s(mi(ho)) 720(in(ho)) 720d12ho =rn(s(h0)) (mod60). 

Since ho and m(s(ho)) are both non-negative and strictly less than 60, we conclude 
that ho = m(s(h0)). (In fact, we just showed that s(n(h)) = rn(s(h)) for any h!) Now 
we have 

s(s(ho)) = s(n(n(h0))) = (in(ms(ho))) = rn(ho); 

this takes care of the last permutation. 
We have shown that for a perfect three-hand clock, there are no times when hands 

can be interchanged to obtain valid clock positions, except for the obvious ones when 
the hands overlap. In other words, if you've a sharp eye, you can always tell what time 
it is on such a clock, even if the hands are installed in some permuted order. 

Is your clock perfect? Ours aren't. How strict must manufacturing tolerances be to 
ensure that there are no nontrivial permutations of the hands that give valid times? 
Let's investigate. 

We'll assume that the spindles that turn the hands are geared together accurately, 
so we're not worried about the relative speeds of the hands. Our concern is with the 
proper alignment of the hands. Notice that there are 11 times in a 12-hour period at 
which the minute hand and hour hand will overlap. If we take one of these and turn 
the clock face so that the minute and hour hands are pointing at 0 (i.e., 12 o'clock), we 
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see that any strange mounting of the hands can be considered as a mis-mounting of 
the second hand only, with the minute and hour hands mounted perfectly. 

With these assumptions, we have the following function for the second hand in 
terms of the hour hand: 

s^(h) = 720h + o - 60[12h + o/60] -720h + o (mod60), 

where o stands for "offset." The function that describes the position of the minute 
hand is still n(h) = 12h - 60 [h/51. We want to find the minimal value of o that 
gives a non-trivial solution for one of the five non-trivial permutations in the last 
section. 

It is immediate from the work done for the perfect clock that permutations 2 and 3 
give no non-trivial solutions for any values of o. Permutation 4 is again more work, but 
the same argument as for the perfect clock again does the trick, with o added to the 
appropriate places in the calculations (that is, with s replacing s). 

Finally, we have to consider the two permutations that move all three hands. We 
claim again that we need only consider one of them. Assume ho is a value such that 
(m(ho), A(ho), ho) is a valid time, that is, 

ho = s(n((ho0)) and s^(ho) = n(n(h0)). 

It is not true now that (W(ho), ho, rn(ho)) is a valid time, but we claim that 
(W(12ho), 12ho,mn(12ho)) is valid, so 12ho gives the desired solution for the other 
permutation (with 12ho reduced modulo 60, if necessary). We must show that 
12ho = rn(s(12ho)) and m(12ho) = A(s(12ho)). Here are the calculations: 

12o=124in(ho)) m (in(n(in(ho)))) _ n( s(12ho)) (mod60); 

in(12ho) = in(in(ho)) = s^(ho) = s^(s^(n(hO))) = s^(s(12ho)). 

So we consider only the permutation (imi(h), s(h), h). We want to find the smallest 
o I that will give a non-trivial hand-switch. We proceed with the help of Mathemnatica 

as for the perfect clock (s and m are the same functions as before: s(h) = 720h, 
m(h)= 12h). 

In[l] = Reduce[s[m[h]] +o-60 m == h && m[m[h]] ==s[h] +o-60 
j, {h, o}] 

-60 (j-m) 60 (8639 j-576 m) 
Out[1]= h == - - - - - - - - - - o ==- - - - - - - - - - - - - - - - 

8063 8063 

Working with this output, we find that 8639 and 576 are relatively prime; therefore 
there are integers in and j such that 8639j - 576mn = 1. As this will give us the 
smallest value for I o l, we find them (using the Euclidean algorithm or Mathematica) 
and get in = 8624, j = 575. Substituting these into h = (60(-j + in))/8063, we 
obtain h = (60 8049)/8063, with the offset o = 60/8063. This translates into a time 
of approximately 11:58:44.9981, with hand positions ( 482940 473700 362820 

8063 8063 8063 J 
The hands don't overlap here, but we get another valid hand position by permuting 
the hands: 

(473700 362820 482940 
8063 8063 8063 J 
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It is easy to check that this last position is indeed valid. We get a similar solution for 
o = - 60/8063. 

So, unless you can be certain that your second hand is mounted no more than 
60/8063 seconds (about 8 thousandths- of a second) off of vertical (at noon), you'd 
better be sure you know which hand is which! 
Acknowledgment. We thank the referee for pointinig out Steinhaus's book [3] and for improving the 
exposition. 

REFERENCES 

1. A. Gardiner, Mathemzatical PuZzlin.g, Oxford University Press, Oxford, UK, 1987. 
2. Y. I. Perelman, Algebra Can Be Fun (translated from the thirteenth Russian edition), MIR Publishers, 

Moscow; Imported Publications, Chicago, IL, 1979. 
3. H. Steinhaus, One Hundred Problems in Elementtary Mathemiiatics, Dover, Newv York, NY, 1979. 
4. T. Szirtes, On the problem of the interchangeable clock hands, J. Recreational Math. 8 (1975/76), 

159-168. 

The Steady State Sabbatical Rate 

ALLEN J. SCHWENK 
Western Michigan University 

Kalamazoo, Ml 49008 

Introduction How many faculty at a research university are likely to be on 
sabbatical at any given time? Well, we are each eligible for one every seven years, so 
about one seventh, or 14%, right? Obviously not. Some of us do not survive until the 
seventh year to become eligible, some do not choose to apply for leave, and, finally, 
some applications are rejected. So it must be lower. Whlat do you think it is? 10%? 
7%? 3%? With all these effects going on, it seems that we cannot hope to predict the 
answer. And yet the solution depends upon only two modest assumptions and 
knowledge of elementary linear algebra. Thus, this problem can be used in various 
undergraduate classes to illustrate the use of matrices and eigenvalues in the real 
world. It may even hold some special appeal for faculty and administrators who'd like 
to be able to predict these things. For example, at my university it was suggested that 
a 3% cap be accepted on the sabbatical rate: in a single year, no more than 3% of the 
faculty would be on sabbatical. This cap would assure that an unusually large number 
of requests do not pile up in a single year, leaving the university sorely understaffed. 
But would such a cap merely "balance out the waves" of irregular demand, or would it 
intrinsically change the frequency of sabbaticals in the long term? 

Background: Perron-Frobenius theory In addition to standard elementary linear 
algebra, we shall need some conclusions from the Perron-Frobenius Theorem (see, 
e.g., Berman and Plemmons [1, pp. 26-31] or Gantmacher [2]). For the sake of 
completeness, we now prove the results we shall need. A square matrix A is called 
irreducible if there is no permutation matrix P such that PAPt = [All A12] with 0 A 22 

square blocks A,1 and A22 on the diagonal. A matrix induces a directed graph 
wlhen we place an arc from i to j wlhenever the entry ai X is nonzero. An irreducible 
matrix always induces a digraph having a directed path from each vertex i to every 
other vertex j. This is called strongly connected. In this case, the matrix (I + A)"'1 
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will have strictly positive entries because the required path between each pair of 
vertices can have length at most n - 1. We let vi denote the ith coordinate of v. 

PERRON-FROBENIUS THEOREM. If A is irreducible and nonnegative, then A must 
have an eigenvalue A1, of maximumliX modt-snocllis, that is real and positive. Moreover, the 
mnultiplicity of A1 mut.st be one, and A1 has an eigenvector y whose coordinates are all 
positive. 

Proof: For each nonnegative vector x define r(x) to be the largest positive constant 
for which r(x)x < Ax. If p is the maximum of r(x) over all nonnegative x, then for 
some y, we have py <Ay. We wish to show that no coordinate j gives the strict 
inequality. If one did, we'd have Ay - py ? 0, but Ay - py 7 0. Let z = (I + A)' y. 
Then z is strictly positive, and we find that 

Az-pz =A(I +A)2 y - p(I +A)y =(I +A) Ay -py). 
Since Ay-p y > 0 and ( I + A)' is strictly positive, we conclude that Az - pz is 
also strictly positive. Thus, r(z) > p contradicting the definition of p. Therefore, we 
must have Ay = py, so p is an eigenvalue with nonnegative eigenvector y. If any 
coordinate of y is 0, irreducibility of A assures that there is a zero coordinate yi = 0 
and a nonzero coordinate y. > 0, with a corresponding nonzero entiy ai X > 0. But 
now we notice that (Ay), > 0 = py1. Since this contradicts Ay = py, we conclude 
that y must be strictly positive. 

If the multiplicity of p = A1 exceeds one, select a second eigenvector z. Now for 
E = 0, the vector w = y - ?Z is positive. Find the largest number 8 for which w is 
nonnegative, then w is a nonnegative eigenvector with some zero coordinates. If w 
also has a nonzero coordinate, we shall locate a zero coordinate wt = 0 and a nonzero 
coordinate tvj > 0 with a corresponding nonzero ently a,1 > 0, leading to the contra- 
diction (Aw)i > 0 = pwv. Therefore w must be identically 0. That is, ?Z = y, so the 
multiplicity of p must be one. 

Finally, let A, real or complex, be any other eigenvalue for A. Then Av = Av. 
Define a new nonnegative vector w by letting wi = I vil . Taking absolute values in 
each coordinate of the eigenvector equation and using the triangle inequality gives 

IAIWti = lAI IVil = : a,jL)j < E: ai,jlL)jl 
= E: ai juVj 

j=l j=l j=l 

This says that IkA Iw < Aw, so I AI < r(w) < p = A1, as required. 

The solution We can now return to the sabbatical problem. To start the analysis, 
we partition the faculty into seven classes, XI through X7. For i < 5, Xi contains all 
faculty in their ith year of service or in their ith year following their last sabbatical. 
These people are not yet eligible for sabbatical. The class X6 contains eveiyone who is 
eligible to apply for sabbatical. We will assume that X6 contains everyone with six or 
more years of service since his or her sabbatical. (Many universities also require 
sabbatical candidates to be tenured; for simplicity, we assume that eveiyone with six 
years' service is eligible to apply. In practice, there are few exceptions to this 
assumption, and if there are any exceptions, they can be removed from the model 
entirely without affecting the solution.) Finally, class X7 comprises all faculty cur- 
rently on sabbatical. 

We shall let xi(t) denote the fraction of the faculty in class Xi in year t. Now the 
fractions xi(t) vary from year to year; we call the distribution a steady state if every xi 
remains constant from one year to the next. It is certainly not obvious that any steady 
state exists. We shall soon show, however, that not only does a steady state exist, but it 
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is unique and stable in the sense that for any starting distribution of faculty among the 
seven classes, the proportions xi(t) approach the steady state over time. 

Thus, our goal is to find the seven limits limt , ̂ xi(t) = yi. We call these values y, 
the "steady state" proportions of our faculty. In particular, y7 is the "steady state 
sabbatical rate" of the title. But how can we find these steady state rates? Are we even 
justified to assume that these limits exist? After all, any human endeavor is filled with 
variability. Might not the sequence X7(t) valy from year to year without ever 
approaching a limit? Maybe x7(t) is another example of chaos. 

In the real world the steady state is never attained. We cannot plan the lives of 
hundreds of people to reproduce the assumptions of a mathematical model. So why 
should we care about steady state values? Because they represent an unbiased, good 
faith estimate of the average number of people that ought to appear in each class over 
an extended period of time. The administration's request for a "cap" reflects the 
legitimate concern that a change in policy might artificially release pent-up demand 
for sabbaticals that vastly exceeds the steady state figure. It is reasonable to try to 
mute, or limit this transient effect. But if we accept a cap below the steady state 
sabbatical rate Y7, pent-up demand can only continue to grow more and more out of 
balance. 

A steady state We will show that the steacly state limits do exist, if we may make 
two assumptions. First, we assume that there is a steady retention rate, r: each year, a 
certain fraction r of the faculty who taught in the previous year return. The 
complementary figure 1 - r is the turnover rate. All right, I admit this is not perfectly 
constant from year to year, but at my university it varies from about 89% to 95%. That 
will be constant enough. We shall assume, in particular, that the turnover rate hits all 
classes equally. This may seem counter-intuitive, but it is a reasonable simplifying 
assumption. For purists who refuse to accept this choice of convenience, we shall 
return to this issue later. Accepting a sabbatical often includes a promise to return for 
one or two years of service following the leave, so one might expect the retention rate 
for class X7 to be 100%, but even here there will be terminations due to death, 
debilitating illness, and broken promises. 

Our second assumption is that a given fraction of X6, say p, will be granted 
sabbatical each year. This may seem hard to predict because of the variations of how 
many choose to apply, and how many of these are subsequently granted. In fact, we 
can view the proportion p actually to be the product of two other rates, p = a X s, 
where a is the application rate, the fraction of those eligible who choose to apply, and 
s is the success rate, the fraction of applications granted in a typical year. While we 
may never "know" these values precisely, we don't even need to know them 
individually. It will suffice if we assume that their product p exists and is constant. If 
we don't know p exactly, we can still draw conclusions from reasonable estimates of 
p. At Western Michigan University, I observe that p seems to lie between 0.2 and 0.4. 
Such an estimate is adequate for our purposes. 

Now it is easy to see that with r and p as above, the classes of our faculty satisfy a 
system of eight equations: 

X2(t + 1) = rx1(t) x(t + 1) = ^x5(t) + (1 - 6p)v(t) 

x3(t + 1) = 'rV2(t) x7(t + 1) = prV6(t) 

x4(t + 1) =irxv(t) x1(t + 1) = + () +(t) +() () 

x5 (t + 1) =^x-x( t ) x1( t ) + x2( t) + x3(t + XJL(t + xs (t + x( t + x7(t )=1 

This content downloaded from 129.96.252.188 on Sun, 18 Oct 2015 20:07:40 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


198 MATHEMATICS MAGAZINE 

The first four equations report retention from one year to the next. The fifth also adds 
those not given a sabbatical who remain in X6. The sixth reports how many go on 
sabbatical, and the seventh counts new hires plus those returning from sabbatical. The 
final equation adds everyone, to get 100%. It is interesting to note that, in the steady 
state, when each xi(t + 1) = xi(t), the eighth equation is the sum of the first seven: 

xi + x2 + X3 + x4 + x5 + x6 + x7 = r( xi + x2 + X3 + x4 + x5 + x6 + X7) + 1-r 

* X1 + X2 + x3 + x4 + X5 + x6 + x7 = 1. 

If we define the column vector x(t) = (x1(t), x2(t), x3(t), x4(t), x5(t), x6(t), x7(t))t 
and the transition matrix 

1-r 1-r 1-r 1-r 1-r 1-r 1 
r 0 0 0 0 0 0 
0 r 0 0 0 0 0 

A= 0 0 r 0 0 0 0 
0 0 0 r 0 0 0 
0 0 0 0 r r-rp 0 
0 0 0 0 0 rp 0 

then the system is nicely presented as the matrix equation x(t + 1) = Ax(t). The 
system approaches a steady state if and only if A"x(t) approaches a limiting vector. 
Notice that A is irreducible, because the positive entries down the subdiagonal plus 
the entry a1 7 = 1 represent a directed seven-cycle among the seven classes. Since this 
makes the underlying digraph strongly connected, the matrix is irreducible. Now the 
Perron-Frobenius theorem assures the existence of a strictly positive eigenvector for 
the largest eigenvalue. 

It is not immediately evident what this dominant eigenvalue is, but we might notice 
that the transpose At has j = (1, 1, 1, 1, 1, 1, 1)t as an eigenvector for the eigenvalue 1. 
In other words, At is stochastic. Thus A1 = 1 for both At and A. To find an 
eigenvector for A1 = 1 in A, let y = (Yl, Y2, Y3, Y4, Y5, Y6, y7)t and assume that 
Ay = y. If we set y, = a, we quickly find the eigenvector 

y = a( 1, r, r2, r3, r4, r r6p )6 t y=a1,rr 'r 1 -r +rp 1 -+ rp 

But y represents the fractions in each class, so we should have y j = 1. This implies 
that 

a 1-r)(1 -r +Trp) cz= 7 ~~~, so 
1-r+rp-r 7p 

(1-r)(1- r+rp) (11 r r2 93 4 p r6p At 
Y 1-r+rp -r 7p \rp'+ ' ' r+rp l r+rpJ 

In particular, the steady state sabbatical rate is y7 (1 - r)r6p/(1 - r + rp - r7p). 
The Perron-Frobenius theorem has been very kind to us. Not only can we verify 

that y is a steady state dominant eigenvector, but we know that, up to scaling, y is 
unique. Thus, the y we have found is the only one whose components sum to 100%. 
The characteristic polynomial of A can be found easily via Maple, or by hand via 
expansion along the first row. Upon factoring, we get 

det( xI-A) = ( x-)(x+ rpx + r2px4 + r3px3 + r4px2 +r5px+rp) 

= (x- 1)q(x). 
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The degree 6 factor q(x) has six complex roots; we shall now show that each has 
modulus smaller than r. First, substitute x = rz and factor, to get 

q( x) =r6(z + pz' + pz4 + pz3+pz+ + pz + p 

Upon multiplying by (z - 1) we obtain 

(z- 1)q(x) =r6(z7-(1-p)z6-p). 

Now any root must satisfy z7 = (1-p)z6 + p. If we assume that Iz 1 2 1, the triangle 
inequality implies that 

IZ17 = (1 -p)_6 +pI < (1 -p)ZI6 +p < (1 -p)Iz_ +pI_6 < 1_. 
This certainly requires |z I = 1, and to get equality above, we need z = 1 = z7. Thus 
we have shown that the only root with I Z ? 1 is z = 1. It follows that every root of 
q(x) has IzI <1, or lxI <r, as we had claimed. 

No root is repeated because q( x) and q '(x) are relatively prime for eveiy p in the 
open interval 0 < p < 1. This can be checked using Maple, or by hand computation. It 
is actually more convenient to work with the degree seven polynomial Z7 - (1 - p)Z6 
- p. Applying the Euclidean algorithm to it and its derivative reduces to the real 
number 74p2[66(1 - p)7 + 77p]. Since this expression has no root on the open interval 
O < p < 1, we may conclude that the gcd reduces to 1, and so A has no repeated 
eigenvalues. Now we let vi denote the six eigenvectors for these complex eigenvalues, 
and we observe that any nonnegative starting vector can be written as a linear 
combination 

6 

x(O)=coy+ Ecivi 

Now we see that 
6 

Al x(0) = x(n) = cOy + EciA vi. 

Since each I I < r, it is clear that A" x(0) approaches coy as n approaches oo. Thus, 
the steady state is unique, and any starting input converges to the steady state. Since 
y j = 1, the constant co equals 1. 

In the real world What does all this mean in the real world? At Western Michigan 
University the retention rate seems to vary from year to year from a low of 89% to a 
high of 95%. If we assume that, on average, r = 0.92, then the steady state sabbatical 
rate is 

0.048508 p 
570.08 +0.362153p 

Suppose that about a third of eligible professors will apply for sabbatical and that 75% 
of applications are granted. Then p = 0.75 X 0.33 = 0.25, and y7 = 7.11%. If, instead, 
we let p range from 0.2 to 0.4, then y7 increases from 6.36% to 8.63%. So it is 
reasonable to expect 6% to 9% of the faculty to be on sabbatical in any single year. 
What about that proposed cap of 3%? Artificially imposing a cap-any cap-redefines 
the transition matrix, creating a new steady state. For example, the 3% cap forces 
Y7 = 0.03, which, in turn, requires the proportion p to be given by the formula 

y7(1- r) 0.03(1 - r) 
P r6(1 - r) + y7r(r6 - 1) r6(1 - r) + 0.03r(r6 - 1) 

For r = 92%, we find that p = 6.38%, a shockingly low proportion. Think about it. If 
about 30% of those in class X regularly apply, then we must have a success rate of 
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only 21% to achieve p. Thus, a typical faculty member would need to apply about five 
times before a sabbatical is granted. That's one sabbatical eveiy eleven years. Perhaps 
we should change the name to an undecemtatical. In contrast, a cap of 7% limits p to 
24.18%, a figure large enough to permit an application rate of 33%, together with a 
success rate of 73%. This seems more in line with the original spirit of the sabbatical 
concept. 

Another interesting observation is how large the class of those eligible (and waiting) 
for sabbatical becomes. With a 3% cap and r = 92%, we find that x6 approaches 
51.15%. Over half the faculty is in line for sabbatical. With a 7% cap, the result is that 
x6 approaches 31.46%. 

The fine print When we first introduced the model, we brushed aside the issue of 
how reasonable it is to use the same retention rate for all classes. If you find the 
constant uniform retention implausible, simpl$y replace the single rate r by a specific 
rate for each class ri. The transition matrix becomes 

1-r1 1-r2 1--r3 1-'r4 1-r5 1-r6 1 

O r~2 3 0 0 0 0 0 0 
o r2 0 0 0 0 0 

A= 0 0 r3 0 0 0 0 
O O 0 r4 0 0 0 

0 0 0 0 r5 r6-r6p 0 

O o 0 0 0 r6 p 0 

It may seem strange that the rate r7 appears nowhere in the matrix, but this is 
appropriate since eveiyone currently on sabbatical either returns to class X1 or is 
replaced by a new hire, also in class X1. In effect, 100% of class X7 moves to class X1 
the following year. It remains true that Atj = j. Now the eigenvector for A1 = 1 
in A is 

{ ~~~~~~~~~~ri r2 r34r5 1lr2 1^3 r4 '5 1^6 P 
y = a(1, rl, r1r9, r2r9r3, r1r2 r3r4, rr + rr p r'6rr + r6 p' J 

Since yj = 1, we find 

1- r6 + r6 p 

r(1 + r1 + r2 + r1 r2 r3 + r1 r2 r3 r4 )(1-r6 + r6 p ) + r r2 r3r4 r5(1 + r6p ) 

Thus, the steady state rate has become 

r1r2 r3r4r5r6 p 

(1+ r + 'r1r2 + rlr2r3 + r1r2r3r4)(1-r6 + r6 p) + rlr2r3r4r5( + r6p) 

This is not much different from the previous answer. In fact, if we set all the retention 
rates to a common value, the steady state sabbatical rate again reduces to 

(1-r)r6p 
Y7 1-r+rp-r7p 
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A Quadratic Residues Parlor Trick 

DAVID M. BLOOM 
Brooklyn College of CUNY 

Brooklyn, NY 11210 

Statements Choose a prime p > 3 such that p 3 (mod 4), but don't tell me what p 
is. Now do (or have your computer do) the following calculations: (1) determine which 
numbers between 0 and p/2 are quadratic residues modulo p (i.e., are congruent to 
squares, mod p); (2) find the sum of these "low" quadratic residues; (3) replace said 
sum by its least non-negative residue r (mod p). Here are three examples: 

p quadratic residues "low" q.r.'s sum of 
(mod p) (< p/2) low q.r.'s 

7 1,2,4 1,2 3 3 

1i 1,3,4,5,9 1,3,4,5 13 2 

19 1,4,5,6,7, 1,4,5,6,7,9 32 13 
9,11,16,17 

Now here's the parlor trick: If you tell me what r is, I'll tell you what p was. (Fairly 
quickly, without a computer.) Conversely, if you tell me p, I can quickly compute r 
without using any information about quadratic residues. 

Challenge. Find the pattern before reading the next paragraph. You might start by 
computing and then plotting the points ( p, r) for perhaps twenty more values of p. If 
this reveals the pattern to you, you'll then be able to go from p to r; but can you go in 
the opposite direction? 

OK, we won't keep you in suspense. The relevant theorem is the following: 
THEOREM 1. Let P = (p > 3: p is prine arnd p 3(mod 4)}. For fixed p E P, let 

r = R( p) be the least non-negative residue (mod p) of the sumn of those quadratic 
residues (mod p) that lie in the interval (0, p/2). Then: 

(a) p is the largest prime factor of 16r + 1. (In particular, r 7 0.) AMoreover, 
p = (16r + 1)/rn where in = 3, 7, 11, or 15, and m is the smnallest of these four 
values such that (16r + 1)/mn is prime. 

(b) Conversely, if r* is a positive integer such that (16r* + 1)/mn is prince for some 
m E {3,7, 11,15}, then r* = R(p*) for some p* E P. 

Notice that Theorem l(a) implies that the function R: P -- Z + is one-to-one-differ- 
ent P-primes p yield different r's. (This was the assertion of part (a) of [2].) Before 
proving the theorem, let's give some examples. Suppose you follow the instructions at 
the beginning (choose p, etc.) and then tell me that r = 13. Since 16r + 1 = 209 = 
11 19, Theorem l(a) then tells me that p = 19 (and m = 11), agreeing with the table 
above. (Even for a number larger than 209, the fact that there are only four possible 
in's makes the factoring problem fairly manageable.) However, suppose you decide to 
cheat: Without following instructions, you just pick a number at random and say, "r is 
23." "Oh, no it isn't!", I can answer, having quickly computed 16 23 + 1 = 369 = 
32 41, which implies that 369/rn is not prime for any of the four possible mn's. (By a 
similar argument, the range of R contains no integer of the form 9n + 5, which, in 
particular, solves part (b) of [2]. Can you find other such forms?) 

Going in the opposite direction, if p E P is given then Theorem l(a) implies 
pm- 1 (mod 16), so that rn is the multiplicative inverse of p (mod 16), and since 
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0 < m < 16 this determines in completely: 

mn-=14-p (mod16); O<m<16. (1) 
Equivalently, 

m = 16[( p + 2)/16] + 14-p. 

Since r = (pm - 1)/16, it follows that we can express r explicitly in terms of p, 
without any calculation of quadratic residues. (The points (p, r) lie on just four 
straight lines, corresponding to the four values of p mod 16. Did you discover this 
already, in response to the "Challenge" above?) For example, if p = 19, then (1) gives 
n = 11 and hence r = (19 11 - 1)/16 = 13, as we expect. 
In proving Theorem 1, we will need the following related result: 

THEOREM 2. Let p E P and let Sp,I S' be, respectively, the sums of those quadratic 
residues arnd. quadratic nonresidues (mod p) that lie in (0, p/2). Then Sp 
S? (mod p) acnld (S, - S')/p (p + 1)/4 (mod 2). 

Theorem 2 is known (we give an elementary proof below) and is of interest in its 
own right. But I haven't found Theorem 1 in print; references would be appreciated. 

Proofs. First, some notation. As above, we let 

P = { p > 3: p is prime and p 3 (mod 4)). 
For any finite set A of numbers, #A and s( A) will denote, respectively, the number 
of elements in A and the sum of those elements. Also, for p E P, let L, = 
{1, 2,. . .,(p - 1)/2} and H. = {( p + 1)/2,. . ., p - 1} (the "low" and "high" inte- 
gers, respectively, between 0 and p). The abbreviations "q.r." and "q.n.r." will stand 
for "quadratic residue" and "quadratic nonresidue," and (p, Q' will denote, 
respectively, the subsets of {1, 2,. . ., p-1} consisting of the q.r.'s and q.n.r.'s 
(mod p). 

LEMMA 1. If p E P, then, for all n, n E=Q (2Z, < p-n E- (Q>. 

Proof. In the field Z, of integers modulo p, it is well known (see, e.g., [1, Theorem 
2.41]) that the group P of nonzero elements is cyclic of order p - 1, say with 
generator [g], brackets denoting residue class mod p. (In number-theorists' language, 
g is a "primitive root" mod p.) Moreover, the only power of [g] having order 2 is 
[ g ](p - 1) /2, so we must have [-1] = [g](p-l)/2, an ocld power of [ g ]. It follows that 
in PI 

[n] is a square - [n] = [g]even < [-n] = [-1][n] = [g]odd 

[ p-n] =[-n] is a nonsquare, 
and the Lemma follows. 

LEMMA 2. If p E P, then s(Q() s(Q) 0 (mod p). 

Proof As above, the squares in /, are [g 2 ], [g4],..[gP - 1=[1]. Thus, Q, has 
n = (p - 1)/2 elements, and these elements are precisely the roots of the polynomial 
congruence x)- 1 0 (mod p). Hence their sum equals minus the coefficient of 
x in x - 1, namely 0 (remember that p > 3 so that n > 1); that is, s(Qp) 0 
(mod p). But then also s(Q) 0 (mod p), since 

s(Q,) +s(Q)= 1 + 2 + +( p - 1) =p( p - 1)/2 - mod p. 

Proof of Theorem 2. We have S = s(Q, n L,) = li(ri) and S = s(Q, n L,) = 

lj(s.) where the r's and s's are the "low" q.r.'s and q.n.r.'s respectively. By Lemma 
1, the remaining q.r.'s (the elements of q.- n H-) are the numbers p- s1 and the 
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elements of , nH are the numbers p - ri. Thus, letting 
t = S-S' = iri.->jsj, p p JJ 

we have 

s(Q/, n L,) - s((2 n LP) =t 

s(QpnH )-s(2rnHP)=Y,(p-sj) - Y(p-rs) 
pS E 

p(#(- n LP) - #(q, n Lu)) + t. 

Adding these two equations gives 

s(Qp) - s(Q) = p(#(q n L,)-#('P n L,)) + 2t. (2) 
By Lemma 2, the left side of (2) is congruent to zero (mod p); therefore t 0 (mod 
p), so Sp- S (mod p), and we can write t = S, - S = kp, k EE . This proves the 
first assertion of Theorem 2. As for the second (concerning the parity of k), we have 

s(L,) = 1 + 2 + ??+ ( p-1)/2= P . 2 *P 

and hence 

P P + t = s(1L) + t 
2 4 ?=(~? 

= (s(Qp n L1,) + s(Q( n L,)) + (s(Q n L,) - s(Q n L,)) 

= 2s(Q( n L,) = 2Sg. (3) 

Equation (3) reduces (mod 2) to (p + 1)/4 + t 0 mod 2, so that t, and hence also 
k = t/p, has the same parity as (p + 1)/4. 

Proof of Theoremn 1. Let p E P. The number r = R( p) is the least positive residue 
(mod p) of S= s(Qp n La), so Sp r (mod p). Thus, if we multiply equation (3) by 
8 and then reduce mod p (and remember that p divides t), we obtain 

-1-16 Sp 16r (mod p) 

so that p is a divisor of 16r + 1, say 16r + 1 = pm. Since r < p, we have in < 16, and 
since p 3 (mod 4) we must also have in = 3 (mod 4), so that in E {3, 7, 11,151. Also, 
if any prime q > p is a divisor of 16r + 1, then q divides in, so that (since p ? 7) the 
only possibility is ( p, q) = (7,11). But for p = 7 we had r = 3 (see table at beginning), 
and then 16r + 1 = 49 is not divisible by q = 11. Hence no such q > p exists, i.e., p 
is the largest prime factor of 16r + 1 (which in turn implies the statement, "in is the 
smallest ... "), proving Theorem l(a). As for part (b), let r* E Z' and suppose (16r* 
+ 1)/rn is a prime p* for some in E {3, 7,11, 15}, and assume that in is the least such 
number that makes this true. Then in 3 (mod 4) implies p- 3 (mod 4); and if 
p* = 3, then pm -i 1 (mod 16) implies in = 11 (a prime > pd), contradicting "m is 
the least . Hence p* E P, so Theorem l(a) gives p* = (16r + 1)/h where 
r = R( p*) and h E {3, 7, 11, 151. Since p n-i 1 p h (mod 16), it follows that 
m= h, hence r* =r= R(p*). 
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Bounding Power Series Remainders 

MARK BRIDGER 
JOHN FRAMPTON 

Northeastern University 
Boston, MA 02115 

Most calculus books use the "Lagrange form of the remainder" to bound the 
truncation error for Taylor series. However, exclusive dependence on this formula has 
several disadvantages. 

1. It works only when one is constructing the Taylor series of a known function, 
using values of its derivative. 

2. It may be very hard or impossible to compute and estimate the derivatives 
required. 

3. The Lagrange remainder is often a poor estimate and is sometimes unusable. 

We'll have more to say about these problems, but it is only fair to ask what we 
propose to use in place of the Lagrange remainder. The answer is surprisingly simple: 
estimate the tail end of the series by comparison with a geometric series. We'll give 
some examples shortly. 

One problem with Lagrange bounds is that they are useful in only one of the cases 
where power series arise: expanding a known function with known derivatives. This is 
nice for convincing students that, in principle, their calculators don't actually need 
massive tables inside them, but can actually calcttlate logs and trig functions. Of 
course, calculators don't actually use Taylor series, but that's another story: in 
principle they might. 

Power series, however, also arise as solutions to differential equations. Until 
recently this use had been downplayed by many numerical analysts, but new computer 
algorithms devised by Harley Flanders [3] may change that. Arguably, this use of 
power series is more valuable than the expansion of known functions via Taylor series; 
however, bounding of the truncation error of such a power series via a Lagrange-type 
remainder is generally not feasible since the derivatives of these power series are 
themselves power series. 

Geometric series, on the other hand, are relatively simple and straightforward 
mathematical objects; many students have seen them in high school. Geometric series 
are perhaps the only series whose convergence properties students really understand; 
everything is known: exactly when they converge, and what they converge to. They are 
a solid piece of real-estate in a sea of uncertainty and confusion. Students also seem 
relatively comfortable with the ratio test, probably because it is easy to remember and 
use. This should present a good opportunity for discussion of convergence in general 
by comparison with the geometric case. However, it is unfortunate that those books 
which do make this comparison rarely continue it into the area of truncation analysis. 

It's time for some examples. First let's consider the matter of approximating e 5. 
The error after truncating at the Nth term is, according to Lagrange, 

(.5)N1 
(N+ 1)! 

where M is a bound on ex for 0 < x < .5. An easy estimate is M = 2, which, for 
N = 6 yields an error of less than 0.0000031. 
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Now let's look at what's been truncated: 

57 58 59 510 
Remainder = 7! + 8! ? 9! ? 10! ? 

57 58 _59 _ 510 
7! ? 77! 2 727! 73 7! 

.57 5 .52 .53 
I !1 + + 72 + 73 + 

= ! (sum of a geometric series; first term 1, ratio 7 

57 
7! (1.1) < 0.00000171. 

Not only do we get a better (smaller) bound, but we don't have to worry about how to 
approximate powers of e as we did with the Lagrange remainder. 

Admittedly, both methods here are pretty simple; if anything, the algebra for the 
Lagrange form is easier. But you don't have to go far to see the algebraic limitations of 
Lagrange: just try finding and bounding the 7th derivative of arctan x or sin (x)/e . 

A more spectacular illustration of the shortcomings of the Lagrange remainder 
occurs in expanding - ln (1 - x) as a Taylor series around 0. It is easily seen that the 
ntlh derivative of this function is - (n - 1)!/(1 - x)' , so 

N S K 
-ln(l-x)= E K RNW, 

K = I 

where 

RN(x) N! xNI I N) 

with O < <x. 

When x = 0.75, the series converges to ln 4, with remainder (V ) ', where 

0 < <- 0.75. If we want to know how many terms to take to get a desired accuracy, 
we have to estimate this remainder but how? If > 0.25 the remainder goes to 
infinity; otherwise it goes to 0. The Lagrange remainder gives us no useful informa- 
tion. 

On the other hand, without using the Lagrange remainder, we get, quite simply: 
CN+1 v N+2 

RN(x) = N+ I N N+2 

N + N 

xN+1 ( 1 
N+1 1-x ) 

When x = 0.75 this gives us a usable estimate of the error caused by truncating 
after N terms. 

Now let's look at the differential equations side of the story. The hyperbolic Bessel 
futnction I0(r) is a solution to the equation 

ry" ( r) + t'(r) -ry =0. 
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Fairly easy algebra shows that 
x 2k 

Io(GO )I r 
2 

k=o 4 (k 

This series converges for all r, but what is the truncation error if we chop it off after 

degree 2N? The remainder is Ek-Nkl !'2, and 

term N+2 r2(N+2) 4N+1((N+ 1)!)2 
I 

__r 2 

term N + 1 4N+2 (( N + 2) !)2 2(N?+1) 4 N+2 

Since these ratios get smealler with N, the remainder is less than the sum of the 
geometric series whose first term is "term N + 1" and which has this last expression 
as its common ratio. Thus: 

r2(N+l) 1 
truncation error < 

-4N+1 ((N + I)i 2 1 2 

If there is any other easy way to find such an estimate for the error here, we are not 
familiar with it; once again the Lagrange remainder won't help. 

This kind of error estimation can be introduced very early in the study of series. In 
fact, when we first compare series in studying convergence, we can point out that 
whenever a series is dominated by a geometric one, then its remainder is dominated 
by the corresponding remainder of the geometric series. But every convergent power 
series is, in fact, dominated by a geometric one. (This fact guarantees that we have a 
radius of convergence.) To see why, suppose that the power series E'k= ak xk 
converges for some x = s with IsI > 0. Since the terms must be bounded, we have, 
when i > N say, a i sj < K for some K. It follows that I ai I < K/j s I j, so we have 

xC x x 

E afkX ? E ak ?K L K 
k=N+1 k=N+1 k =N+l1 

which converges for I x I <I si. In our examples, we chose a dominating geometric 
series that provides a useful bound. 

A final question may be posed: How do you prove that various Taylor series 
converge to the functions they represent without using the remainder term? The 
solution is simple: invoke the uniqueness theorem for the solutions of differential 
equations. All elementary functions encountered in calculus satisfy simple differential 
equations. In fact, it is instructive for students to find such equations for the 
exponential and trigonometric functions. The Taylor series for these functions can also 
be shown to satisfy the equations (doing so is a good exercise in manipulation of 
series). 

The intuitive content of the uniqueness theorem for solutions to ordinary differen- 
tial equations at least those of orders 1 and 2 is so strong and so important, that it 
would be a pity if we didn't present it to our students. If there was ever a topic central 
to "calculus reform," it is this one. Even without a formal analytical proof, its physical 
and geometric interpretations make acceptance easy and compelling. Furthermore, it 
is philosophically tied to our perceptions of physical or Newtonian determinism; we 
invoke it implicitly nearly every time we solve a mechanics problem with calculus. 
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In summary, we propose de-emphasizing the Lagrange form of the remainder in 
the curriculum of the usual two-year calculus sequence, and emphasizing instead the 
use of geometric series bounds on truncation errors, and the introduction of the 
uniqueness theorem for solutions of differential equations. 

We conclude with two notes: 

* The ideas in this paper have been tested in the Project CALC program,at Duke 
University for several years now, and have proved quite successful. A discussion 
can be found in the Project CALC text [4]. 

* Comparison with geometric series can be used to correct truncation errors by 
adding on compensating sums. The most famous version of this "acceleration of 
convergence" technique is called Aitken's A2 [1], [2]. 
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Proof Without Words: Eisenstein's Duplication Formula 
2 csc(2 0) = tan 0 + cot 0 

(G. Eisenstein, Mathematische Werke, Chelsea, New York, NY, 1975, page 411.) 

-IN TAN 
WEST CHESTER UNIVERSITY 
WEST CHESTER, PA 19383 
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The Fundamental Theorem of Calculus 
for Gauge Integrals 

JACK LAMOREAUX 
GERALD ARMSTRONG 

Brigham Young University 
Provo, UT 84602 

This note presents a Fundamental Theorem of Calculus for gauge integrals that is 
very general but still accessible to undergraduate students. We first define the gauge 
integral and give some of its properties. We then introduce an extended notion of 
differentiation, that of the parametric derivative. Finally, we combine these concepts 
to state and prove the most general Fundamental Theorem of which we are aware. 

The gauge integral The gauge integral (also known as the generalized Riemann, 
or Kurzweil-Henstock integral) is defined using Riemann sums, and is a direct 
generalization of the Riemann integral ([4], [5], [6]). The gauge integral turns out to 
be more general than the Lebesgue integral as well. The generalization involves a 
device called a gauge which allows the intuitively appealing choice of smaller intervals 
where the function being integrated is steep, and larger intervals where the function is 
flat. 

As we do for the ordinary Riemann integral, we define a partition of the interval 
[a, b] to be a set of points xO, X1, X2, ...,X with a=xo<xl< <x=l b. We 
choose a number Zk, called a tag, in each interval [Xk-1, Xk]; the result is a tagged 
partition of the intelval [a, b]. Then EL=lf(zk)(xk - Xkl) is a Riemann sum forf on 
the interval [a, b]. 

We define a gauge y by choosing for each point p in [a, b] an interval -y(p) 
containing p. A. tagged partition is called y-fine if for every k, 1 < k < n, [Xk-1, Xk] is 
a subset of the interval Y(Zk). An alternative description of gauge can be given by 
defining any positive function 8, with domain [a, b], to be a gauge; the equivalence of 
this to our definition is obtained by letting y(x) = (x - 8(x), x + 8(x)), for x in 
[a, b]. We leave as an exercise a proof that given any gauge y on [a, b], there exists a 
tagged partition of [a, b] that is y-fine. 

The gauge integral is defined as follows. Let f be a real-valued function defined on 
the interval [a, b]. The number I is the gauge integral of f on [a, b] if for each 
positive e there is a gauge -y such that if {Zk, [xk -, Xk ]} is a y-fine tagged partition of 
[a, b], then 

It 

- Ef(Zk)(xk Vk-l) < E. 

k=l 

If -y is a gauge determined by a function whose intervals have lengths bounded 
away from 0, then the set of tagged partitions is the same as that used for a Riemann 
integral. Therefore, the gauge integral includes the Riemann integral. The generality 
of the gauge integral can be seen by some examples. 

Example 1. Let f(x) be the Dirichlet function on [0, 1], i.e., f(x) = 1 for x 
rational and f(x) = 0 for x irrational. We show that this function has a gauge integral. 
Let E > 0, and let {rk} be an enumeration of the rationals in [0, 1]. Choose a gauge y 
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as follows: For each k, let y(rk) = (rk - k21 rk + 2k? ). For irrational x, let 
y(x) (-1, 2), say. Let {Z1k, [ Xkl_, Xk ]} be a -y-fine tagged partition of [0, 1]. Then if 

Al i rj, f(Zk)(xk Xk-1) < S7v* If Zk is not rational, f(zX)(xk 
-Xk-1) 

= 0. Therefore 

E k( )(X 21; Vk-1) < E k < 6 
k=l k=l 

This shows that the gauge integral of the Dirichlet fuLnction is 0. Because f is 
evei-ywhaere discontinuous, it does not have a Riemann integral. Since f is constant 
except for a set of measure zero (the rationals), however, it does have a Lebesgue 
integral. Note that the way we selected this gauge corresponds to how one shows that 
a countable set has Lebesgue measure zero; with a slight modification, this same 
technique will show that the gauge integral exists for any continuous function whose 
definition is altered in any bounded wvay on any countable set. 

Ex^asnple 2. Let F(x)= X2sin (11x') for X7& 0, F(O) =O. This fuLnction has a 
derivative at each point of [0, l] (the difference quotient is needed to find P'O)). 
However, the clerivative F'(x^) is not Riemann integrable on [0, l], since it is 
unbounded. The derivative is not Lebesgue integrable either, since f 'I F'(x)J dlx = oo. 
It turns out, however, that F'(x) is gauge integrable, and the Fundamental Theorem 
of Calculus applies, so 

|1 Ft( x) clx = F(1) -F(O) = sin l. 

This result follows frot the theorem proven below. 
The Fundamental Theorem of Calculus consists of the equation af( *x ) clesg 

F(b)n - F(a), where F is some type of antiderivative of f on [, bds together s with 
various hypotheses on f or F. The version of this theorem usually seen in elementaly 
calculus requires that Fh =f(x) at each x in [e, b, and that f be continuous on 
[a, b]. 

The continuity hypothesis can be relaxed; we need only assume that f is Riemann 
integrable on [a,LbF. One proof of this version of the theorem functifrom the 
follodving chain of equalities, where xd, xlen q uo x tie is a partition of [ f, b F 

F( b) -F( ra) tiv ( F( xk) - F( Rike a on [0, Xk-1 s i 
k=l k=l 

The first equality is valid because the middle terale is a telescoping SUllF , and the 
second follow,s by applying the mean value theorem to F on each subintei-val 
[Xk-1, 'Xk]. The last term is a Riemann sum approximating the integral of f. The 
hypothesis that f is Riemann integrable is satisfied for every bounded function f that 
is continuous almost everywsere. However, the hypothesis that f has an antiderivative 
F on reu, bf is difficult to check. For example, a function f with a simple jump 
discontinuity does not have an antiderivative. (Recall that derivatives must satisfy the 
intermediate value property, and so cannot have jump discontinuities. See, e.g., [2, p. 
122].) 

For the Lebesgue integral, the Fundamental Theorem of Calculus holds if and only 
if () F is absolutely continuous; and i r F' =vf alost eveonywhere on [b], bh. One of 
the most important properties of the gauge integral is that it satisfies an unrestricted 
form of the Fundamental Theorem of Calculus: if F'[=f on [a, b, this theorem holds. 

The parametric derivative We turn now to our second main concept, the para- 
metric derivative [7]. (We will comment later on relationshie s betoeeen the farametric 
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derivative and the gauge integral.) The idea involved in defining this generalized 
derivative is not difficult to grasp. In some cases, by parameterizing the independent 
variable in a non-differentiable function, the composite function is differentiable. 

We say that the function F, defined on [a, b], has a parametric derivative f on that 
interval if there exists a stiictly increasing differentiable function ?>, where ?> maps 
some intelval [a, ] onto [a, b], so that F o ?> has an ordinary derivative on [a, 8], 
with 

(F o +'t f () 't 
Some facts follow from the definition: 

1. Since k(t) = t is possible, the parametric derivative generalizes the ordinary 
derivative. 

2. If +'(t) 7 0, then F'(x) =f(x) is the ordinary derivative at the point x = +(t). 
3. If the parametric derivative of F is zero at each point of [a, b], then F is 

constant. 
4. Parametric differentiation is a linear operator; thus (kF)' = kF' if k is constant, 

and (F + G)' = F' + G' (here, primes denote parametric differentiation). 

Items 1, 2, and 3 may be checked by the reader. Item 4 is more difficult to prove; for 
more details, see [1]. Observe also that f need not be unique; if +'(t) = 0, then f can 
take any value at the point x= +(t). 

Some examples will illustrate the concept of parametric derivative. 

Examxple 3. Let F(x) = IxI on [- 1, 1]. This function has no derivative at x = 0. If 
+(t) = t3, - 1 < t < 1, the resulting function F(&(t)) = It31 is eveiywhere differen- 
tiable. A parametric derivative of F is then f, where f(x) =-1 for x < 0, f(x) = 1 
for x > 0, and f(O) arbitrary. 

Exanple 4. Let F(x) = xsin(1/x) for x 0 0, and F(O) = 0. This function also fails 
to have a derivative at x = 0, but composing F with ?>(t) = t3 shows that F has a 
parametric derivative. 

These two examples are discussed by A. M. Bruckner as part of general considera- 
tions related to "creating" and "destroying" differentiability [3]. He describes how a 
homeomorphic change of variables (composition with ?b as above) can transform 
nondifferentiable functions into functions with various differentiability properties. He 
obtains the following somewhat surprising result: 

Example 5. The Cantorftnction is a continuous, nondecreasing function on [0, 1], 
which is constant on each interval complementary to the Cantor set, and maps the 
Cantor set onto [0, 1]. This function can also be made differentiable by a (highly 
nontrivial) change of variables. (For details on the Cantor function, see, e.g., [2, pp. 
135-139] or [6, p. 129].) 

The main theorem We now proceed to our main theorem. Observe that since 
ordinary derivatives are also parametric derivatives, the proof is also valid for ordinary 
derivatives. From now on, integrals will be gauge integrals. 

THEOREM. Let f(x) be a paranetric derivative of F(x) on [a, b]. Then f(x) is 
gauge integrable on [a, b], and 

ff( x) dx = F(b) -F(a). 

WlVe do the mnain compnutation of the proof in a lemma. 
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LEMMA. Let F( x) have a parametric derivativef( x), with differentiable parametric 
representation 0(t) on [c, d]. Th-en, given p E [c, d] and E> 0, there exist.s 8> 0 
such that if p - 8 < s < t < p + 8, thert. 

I F( 0)(t)) -F( 0)(s)) -f( 0)( p)) ( 0(t) - (s)) I < E(t -s). 

Proof Using the definition of paramnetric derivative and standard limit theorems, 
we get 

lin. {F( 0 (t )) F ( 0(t (P )) -f (t( ) )OM( )- 0( p) ) 

So given E > 0, there exists 8 = 8(E, p) > 0 such that if 0 < t - p < 8, we have 

|F( 0(t)) Ft ( p) 0((( p)) A0 ?) OM - ( p) |< 

or, equivalently 

I F( (P(t)) - F (P( p))-f ) p))( 0(t) - ( P)) <,E(t p). 

Since 0 < p - s < 8, it follows from the triangle inequality that 

F( (P(t)) - F( 4(s)) -f( 0( p))( 0(t) -(s)) I 

= F( (P(t)) - F 0( p)) + F( 0)( p)) -F( 0)(s)) 

-f(P( p))( (t) - 4( p)) -f( ( p))( 4( p) - 00)) 
< E(t-P) +,E( p-s) =,E(t-s). 

This completes the proof of the lemma. 

To prove the theorem, given a 0(t) and any E > 0, let xo E [a, b]. We note that 
since 0(t) is a strictly increasing continuous function, it is a homneonlorphisin; thus 
0-1 exists and is continuous. If po = 0-'(x^) E [c, cl], let 8 = 8(E/(d - c), po) be 
given by the lemmia. Then, by the continuity of 0' at xo, there exists a 81 > 0, such 
that if I x, - xo I < Q1 and I y' -x0j < 8D and t, = '-1(xl), and s1 = '-1(y1), then 
t - po I < 8 and s - po I < 8. Furthermore, if we put Yi <x0 <x1, then sl < Po < 

tl. 

Applying the lemma to si, Po, and t1 gives 

|F(?(tl)) - F(?P(s)) -f(4)( po))(4)(tj) - < ds-I c (ti - si) 

For each x in [a, b], we choose a 81(x) in this manner. This provides a gauge on 
[a, b]; for each x we choose the open interval (x - 81(x), x + 81(x)). Let D= 
{zi, [xi1, xi]: 1 < i < n} be a 81-fine tagged partition of [a, b]. Then 

| f( zi) (x - xi_- Fb- F(a))| 

= E f( zi)( xi-xxi-j)- (F( xi)-F( x,-l)) 
i=l i=l 

=E F( xi)-F( xi- -f( ,i)( xi-xi-)} 
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Define c, and t,_ 1 < i < n, by /)-'(zi) = c, and 4'-'(x1) = ti, 1 < i < n. Since xi-, 
and xi are contained in (zi - 81(z ), zi + 81(z)), it follows that ti_ and ti are 
contained in (c, - 8(c), ci + 8(c)). So the last expression becomes 

E {F( b(ti)) - F(b(ti-1)) -f(b(ci))(b(ti)) - (ti-J) 

1 < EIF(O(tj) - F(O(ti-1)) -f(O(ci))(O(ti) - (ti-1))I 

< E_ (ti-i)= 

where the last inequality uses the lemma. This completes the proof of the theorem. 
We have found the preceding proof appropriate for advanced calculus. Although 

the proof is a bit long, the ideas are not difficult, and they offer students a glimpse of 
some deep ideas in analysis. 

Parametric derivatives and gauge integrals Tolstov [7] proved that a frLnction 
F(x) on [a, b] has a parametric derivative f(x) there if and only if f(x) is integrable 
in the restricted Denjoy sense on [a, b], with fabf= F(b) - F(a). (Tolstov's result is 
discussed in [3, Theorem 4].) This provides our rationale for the connection between 
the parametric derivative and the gauge integral in the above theorem, because the 
gauge integral is equivalent to the restricted Denjoy integral [5]. All this implies that 
the converse of our theorem is true, although we have no elementary proof of this 
fact. (The main problem is finding a k) in the definition of parametric derivative.) It 
would be interesting to obtain an elementary proof. 
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Introduction A finite set A has a size, I Al, the number of elements in A. Given any 
two finite sets A and B, it is intuitively clear that exactly one of the following relations 
holds: IA I < I B l, IA I = I B |, R B < I A A. This is so because the set Z + of non-negative 
integers satisfies the trichotomny property: for in, n c ?7+ we have in <,II, n= ='In, or 
mn < n, and each of these relations excludes the other two. Cantor extended the notion 
of the size of a set by introducing carclinal ntunbers. Two sets A and B have the 
same cardinality (i.e., size), and we write IAI = IB I, if there exists a one-to-one and 
onto function f: A -, B. If there exists a one-to-one function f: A -, B, but 
IA I I B I, then IA I < I B I. It is certainly desirable that the cardinalities of two sets A, 
B be uniquely comparable, i.e., that precisely one of the relations IA I < I B l, IA I = I B |, 
or I B I < IA I holds. In the beginning of his famous Beitrilge [1, 2, 3], Cantor gave a 
simple argument showing that at most one of the relations ae < ,, a = ,, and , < K 
holds for any tvo cardinal numbers ae and , [3, pp.89-90]. He then wrote: 

On the other hand the theorem that, with any two cardinal numbers ae 
and ,B, one of those three relations must be realized is by no means self 
evident, and can hardly be proved at this stage. 

After this statement, Cantor claimed that the theorem would be proved at a later 
stage. It wasn't proved at a later stage. 

Although well ordered sets and ordinal numbers were defined and studied by 
Cantor in the second part of the Beitrczge [2], he proved trichotomy for ordinals in 
section 13 of the first part [1, 3]. (Well ordered sets and ordinal numbers will be 
defined later in this note.) In [7, 8], Zermelo proved that every set can be well 
ordered, and pointed out that this fact, coupled with ordinal trichotomy, implies 
trichotomy for cardinal numbers. 

A simple, straightforward proof of cardinal trichotomy, using Zorn's lemma, (see [5, 
section 18] for a statement and proof of Zorn's lemma) is as follows: Let A and B be 
two sets with I B I W- IA I. A function f: A' -! B with A' C A is called a partialfimction 
from A to B. Let Y be the set of all one-to-one partial functions from A to B. Let 
fl: A1 -> B and f2: A2 -' B be two partial functions from A to B, with A1 cA2. If 
the restriction of f2 to A1 is fl, then f is called an extension of fl, and we write 
fh ?f2. It is easy to see that 5 is a partially ordered set under the relation < . By 
Zorn's lemma, there exists a maximal element f C Let A' be the domain of f, and 
let B' be the range of f. If B' = B, then I B I < IA l, a contradiction. If A' = A then 
IAl < IB|. If A' CA and B' cB, then choose a ECA \A' and b E B \ B'. Define f': 
A U {a} , B by 

f'(x)= Jf(x) if x E A' 
b if x =a. 

Then f' E,5 and f <f', a contradiction. 
In this note, the method just used to prove trichotomy for cardinal numbers will be 

employed to prove ordinal trichotomy. The set 1 will be taken to be a set of certain 
order-preserving functions, and again Zorn's lemma will yield the result. There is a 
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pedagogical advantage in this proof. A beginner in set theory can first see the method 
of proof in the easier cardinal case, and then better understand the proof of the more 
complicated ordinal case. (It is interesting to note that it was easier for Cantor to deal 
with trichotomy for ordinals than for cardinals. He never succeeded in proving 
cardinal trichotomy.) 

The trichotomy theorem for ordinals was also proved by Baire, Hausdorff, and 
others. Hausdorffs proof is especially attractive (see the Comparability Theorem in 
[6]). The proof relies on the fact that the set W(ae), consisting of all ordinals less than 
a given ordinal a, is a well ordered set with ordinality a. 

Much information about Cantor and his work may be found in [4]. 

Ordinal Trichotomy A partially ordered set is said to be well ordered if every 
non-empty subset of A possesses a smallest element. 

All sets in this paper will be assumed to be well ordered. 
The smallest element of a set A will be denoted by min(A). For a E A, the set 

s(a) = {x C AIx < } is called the initial segment of a. A function f: A B is said to 
be order preserving if f(a,) <f(a2) for all a1, a2 satisfying a, < a2 If an order 
preserving function f: A -> B is onto, then f is called a similarity, and the sets A 
and B are said to be sinilar, and we write A - B. Two sets A and B have the same 
ordinality, ord (A) = ord (B), if A - B. If A - B' for some subset B' c B, but A f B, 
then ord (A) < ord (B). The domain of a function f will be denoted dom (f ). A set A 
is a section of a set B if A - s(b) for some b c B. 

The following propositions are well known and easy to prove (see, e.g., [5, p.67 and 
p.72]). 

PROPOSITION 1. (Transfinite induction) Let A' cA. If s(a) c A' =* a c A' for all 
a E A, then. A' = A. 

PROPOSITION 2. Let f: A > A, be order preserving. Th-en a < f(a) for all a c A. 

PROPOSITION 3. Let f: A > B, be a similarity. Th-en f: s(a) -> s(f(a)) is a similar- 
ity for all a E A. 

A simple consequence of Proposition 2 is the following result of Cantor [3, p.144], 
which he called B: 

THEOREM B. Let a E A. Then A 4 s(a). 

Theorem B implies the following corollary: 

LEMMA 4. For two sets A and B, at most one of the following conditions is 
satisfied: A is a section of B; A - B; B is a section of A. 

Let A' c A be such that either A' = A or A' = s(a) for some a c A. A function 
f: A' -> B satisfying f(a) = min( B \f(s(a)) for all a c A' is called a partial simnilarity 
from A to B, or simply a partial similarity. 

Let f: A -> B be a similarity, let a c A, and let b c B \f(s(a)). Since f is onto, 
there exists a' c A such that f(a') = b. Since b Xf(s(a)), it follows that a' X s(a), i.e., 
a < a'. Hence f(a) <f(a'), and so f(a) = min(B \f(s(a)). This shows that every 
similarity is a partial similarity. 

LEMMA 5. Let f, g: A' -> B be partial similarities. Then f = g. 

Proof: Let A" = {a c A'If(a) = g(a)}. In order to show that A" = A' it suffices to 
show, by Proposition 1, that for a c A' the assumption s(a) c A" implies that a A", 
or equivalently, that f(a) = g(a). Now f(a) = min(B \f(s(a))) = mnin(B \ g(s(a))) 
= g(a). 
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LEMMA 6. Let f: A'-- B be a similarity. Then f: A' ->f(A') is a partial simnilarity. 

Proof: Let a,, a2 C A', with a1 < a2. Since f(al) Ef(s(a,)) and f(a2) )f(s(a92)), it 
follows that f(al) f(aa). It therefore suffices to show that f(al) ?f(a2). The 
inclusion s(al) c s(a2) implies that B \f(s(a2)) C B \f(s(al)), which yields that 
f(al) = min(B \f(s(al))) < min(B \f(s(a2 ))) =f(a2 ). 

LEMMA 7. Let f: A' -> B be a partial sinilarity. Then either ff A') = B or ff A') = 
s(b) for some b C B. 

Proof: Suppose that f(A') = B. Let b = min(B \f(A')). Clearly, s(b) cf(A'). Let 
a' E A'. Then s(a') C A' B \f( A') C B \f(s(a')). Taking the minimum of these sets 
shows that f(a') < b, and from the definition of b, it is clear that f(a') = b. 
Therefore, f(a') < b, and so f(A') = s(b). 

An immediate consequence of Lemmas 6 and 7 is as follows: 

COROLLARY 8. Let f: A'-- B be a partial similarity. Then either A' B, or A' is a 
section of B. 

Let 9 denote the set of partial similarities from A to B, and let f1 ?f2 denote the 
relation that f2 is an extension of fl. It is readily seen that 9 is a partially ordered set 
under this relation. 

LEMMA 9. Let f_,2 If dom (f1) c dom (f9) then f2 is an extenTsion off,. 
Proof: If dom (fl) = dom (f2) then f1 =f_, by Lemma 5. It may therefore be 

assumed that dom(f) =s(a), with a c dom(f_) = A'. Now f9: A' ->f_(A') is a 
similarity, so fQ: s(a) -- s(f2(a)) is also a similarity, by Proposition 3. Since similarities 
are partial similarities, it follows that both fl, f_ :dom (f1) -> B are partial similarities. 
Now Lemma 5 implies that the restriction of f, to dom(f1) is fl, i.e., f1 ?f,. 

Lemma 9 and the fact that A is well ordered yields that 5 is well ordered. 

LEMMA 10. Y possesses a maximial elemnent. 

Proof: Consider the function fo: {min(A)} -> B defined by fo(min(A)) = min(B). 
Since fo belongs to 5 Y0 0. Let C = {f Ii C I} be a chain in 5 and let A' = 
U i ( I dom(f ). Define f: A' -> B by f(a) =fi(a) for a c dom(fi). Lemma 9 assures 
that f is well defined. Clearly f is an extension of fi for each i c I. To show that f is 
an upper bound for C in 5 it suffices to show that either A' = A or A' = s(a) for 
some a c A, and that f is a partial similarity. If dom(fi) = A for some i c I, then 
f=fi is a partial similarity. It miiay therefore be assumed that for each i c I, 
dom(fi) = s(ai) for some a, c A. Suppose that A' = A. Let a = min(A \ A'). Clearly, 
s(a) c A'. Let a' c A'. Then a' c s(ai) for some i E I. If a < a' then a E s(ai) c A', a 
contradiction. Therefore a' c s(a), and so A' = s(a). Now 

f(a') =fi(a') = min(B \fi(s(a'))) = minB \f(s(a')), 

and so f is a partial similarity. By Zorn's lemma 5 possesses a maximal element. 

THEOREM 11. Precisely one of the follotving conditions is satisfied: A is a section of 
B; A - B; B is a section of A. 

Proof. By Lemma 4, it suffices to show that at least one of the above conditions is 
satisfied. Let f: A' -> B be a maximal element in 57 There are three cases to 
consider: (1) A'= A; (2) A' 0 A and f(A') = B; (3) A' 0 A and f(A') = B. In case (1), 
Corollary 8 yields that either A = B or A is a section of B. Clearly, B = A' in case (2). 
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Since in this case A' = s(a) with a E A, it follows that B is a section of A. In case (3), 
A' = s(a) for some a E A. Let b = min(B \f(A')). Define f: A' U {a} -> B by 

f(x){tf(X) if xEA' fx) b if x =a. 

It is readily seen that f Y,7 and that f <f; this contradiction completes our proof of 
ordinal trichotomy. 
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Inclusion-Exclusion and Characteristic Functions 
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FIN-02015 HUT 

Finland 

Introduction The inclusion-exclusion formnula of set theory and combinatorics con- 
cerns the number of elements in unions of finite sets. In the simplest case, it takes the 
form 

nr(AUB) = n(A) +1n(B) -n(AnB), (1) 

where A and B are subsets of some universal set S, and n(X) denotes the number 
of elements in a set X. In the case of three subsets A, B, and C, we have 

n( A U B U C) = n( A) + n( B) + n(C) - n( A n B) - n(B n C) 
- n(C nA) +,n( An Bn C). 

The general formula can be written as follows: 

Jn( A1 U A2 U * U AP) 

= n( A) - ( Ai n A( ) + E n(A n AJ n Ak)- 
l <i<9 1 <i<j<P 1<i<j<k<p 

+(-1) +'n(A, n A, n ... n AP). (2) 

Although sometimes classified as an advanced counting technique (see, e.g., [2]), the 
formula is a fairly elementary result. When the number of subsets involved is small, 
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Since in this case A' = s(a) with a E A, it follows that B is a section of A. In case (3), 
A' = s(a) for some a E A. Let b = min(B \f(A')). Define f: A' U {a} -> B by 

f(x){tf(X) if xEA' fx) b if x =a. 

It is readily seen that f Y,7 and that f <f; this contradiction completes our proof of 
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Introduction The inclusion-exclusion formnula of set theory and combinatorics con- 
cerns the number of elements in unions of finite sets. In the simplest case, it takes the 
form 

nr(AUB) = n(A) +1n(B) -n(AnB), (1) 

where A and B are subsets of some universal set S, and n(X) denotes the number 
of elements in a set X. In the case of three subsets A, B, and C, we have 

n( A U B U C) = n( A) + n( B) + n(C) - n( A n B) - n(B n C) 
- n(C nA) +,n( An Bn C). 

The general formula can be written as follows: 

Jn( A1 U A2 U * U AP) 

= n( A) - ( Ai n A( ) + E n(A n AJ n Ak)- 
l <i<9 1 <i<j<P 1<i<j<k<p 

+(-1) +'n(A, n A, n ... n AP). (2) 

Although sometimes classified as an advanced counting technique (see, e.g., [2]), the 
formula is a fairly elementary result. When the number of subsets involved is small, 
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say 2 or 3, its truth caan be seen immediately by means of a Venn diagram. It is 
nonetheless an important genieral principle of 'combinatorics, used, for instance, to 
find the nuihber of derangemenits of n objects. (A derangement is a permutation in 
which no element occupies its original plaoe,) 

In [2] the formula is proved by showing that "an element in the union is counted 
exactly once by the right-hand side of the equation." A similar proof is given in [1]. 
Another approach is to apply induction, after establishing the intuitively obvious case 
of two sets. 

We would like to draw attention to another proof, which we think deserves to be 
better known (the author could not find it in any of his numerous books on discrete 
matheematics). The main idea of the proof is certainly not new (we welcome refer- 
ences). 

The characteristic function We begin by defining our main tool and stating some 
of its basic properties. For A C S, thle characteristic function qA: S {0, 11 iS defined 
by X 1 if xEA 

0 if x X A 

The cardinality (number of elements) of A can now be written as 

n( A)= qE -X)- 3 
xEs 

We will also need the formulas 

qAn B qAqB (4) 

qA- 1qA (5) 

whiere A is the complement of A, and 1 is the unit function: i( x) = 1 for all x E S. 
The forrm~ulas (4) and (5) are easily checked: (qAqB)(x) = qA(x)qB(x) is 1 exactly 

when x belongs to both A and B; and (1 - qA)(x) = 1(x) - qA(x) = 1-qA(x) is 1 
exactly wlhen qA(x) is 0, i.e., when x E A. 

Proving the inclusion-exclusion formiulA Let us first attack the simple case with 
two subsets. To begin with, a suitable expression for the characteristic function of 
A U B is derived: 

qAU B qAUB (by (5)) 
= 1 qA-n B- (by de Morgan's law) 
= 1 - qA-qs (by (4)) 

= 1 - (1 - qA)(- q) (by (5)) 
= 1- (1 - qAqB+ AqB) 

qA + qB qAqB =qA + qB- qAn B (by (4)) 
Using equation (3), we now obtain formula (1): 

n(AUB) = qAUB(x) - (qA+qB -qAnB)(X) 
X ES xE S 

E {qA(X) +qB(x) qAn B(X)} 
S 

E qA(X)+ EqB(x) qA n B( X) 
xeS EES x eS 

=n(A) +n(B) -n(AnB). 
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A similar proof can be carried out in the general case: 

qA U U.As) A qAU.. UA, =1 qAtn .nA 

=1- (1-qA) .(1 qAp) 

EqAi= E qAiqA E +qA,qAjqA, 
1<i<P 1<i<j<p 1<i<j<k<p 

+ (-1) qA,qA, qAp) 

= E qAi E qA n E qAn Aj n At 
1<i<p 1<i<j<P l<i<j<k<p 

+ (1) +qAlnA 1 

from which (2) is obtained by means of (3). 

Remarks Our proof develops the formula "from first principles," whereas in 
approaches like the one in [2], the formula has to be known at the outset as a guess or 
hypothesis, and the proof consists of a verification of the hypothesis. On the other 
hand, our proof cannot be fully understood and appreciated without a modest amount 
of familiarity with abstract algebra or functional analysis (the fascinating insight that 
functions can be treated as elements of an algebra-added, multiplied, etc.). This 
may, unfortunately, limit the proofs usefulness in basic courses. 

We note, finally, that the finiteness of the set S is not essential; one can just replace 
the sum in (3) by a suitable integral. The finiteness of the number of subsets 
considered is more difficult (impossible?) to get around. 

A generalization can be achieved by introducing a weight function w(x), and 
replacing n( A) by a more general "magnitude" 

rn( A) = ( tv( x)qA(x). 
xeS 

Acknowledgment. The author is indebted to the referee for valuable remarks and suggestions. 
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Proof Without Words: Bijection Between Certain Lattice Paths 

Dedicated to Ernst Specker on the occasion of his 78th birthday. 

flip horizontally 0 

- - - - - - - - - - - - - - - - - - - - - - - - - - / \ 

p 

ab: lattice path with starting point and endpoint on the same (given) level 
p: first minimum on the path ab 

pc: lattice path staying above initial level (non-ruin path) 

Conclusion There exist as many non-ruin paths of length 2n as paths of length 2n 
with starting point and endpoint on the same level, namely ( ). 

-NORBERT HUNGERBUHLER 

ETH-ZENTRUM 
CH-8092 ZURICH 

SW,NITZERLAND 

An Antisymmetric Formula for Euler's Constant 

JONATHAN SONDOW 
209 West 97th Street 
New York, NY 10025 

The formula 

lim+ 1 ( X) 

shows that Euler's constant, y, which is defined (see [1]) by 

y= im 1 + 
1 

+ -+ 
1 
-logn (2) 

fl -*00 2 

is the limit as x approaches 1 from above of a series whose terms are antisymmetric in 
n and x. The formula also implies that y is the limit as x 1 + of the difference 
between the p-series Z7= 1/nx and the geometric series EcI=, 1/x ", because 

n x n=I n =1 x 

for x > 1. On the other hand, since the geometric series sums to 1/(x - 1), the 
formula is itself an immediate consequence of the fact (see [4, Section 2.1]) that 

limr(x) xt - 1f = 

where ; (x) = ftI= /n x is the Riemann zeta fuLnction. (For a connection between y 
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and the zeros of the zeta function, as well as a wealth of other information and 
references on y, see [2].) 

We now give an independent proof of the formula. First, note that 
/ 11I 

y= lim E T ( +1) 
n--oo k=1 

is equivalent to the definition of y, because 

lim (logn - log('n + 1)) = lim log( + . 1) = 

Now write 

1 Cdt. 0, [+cit 

and 

~?dt + jk?dt 
log( n+ 1) + k 

as sums of integrals. It follows that the limits in equations (1) and (2) can be written as 

lim 11f--f 'it (3) x1 + (n-'I ' 

and 

(1 jn?ldt) 

respectively. The two limits are therefore the same, since the latter series is the 
term-by-term limit of the former series, which we now show converges uniformly, so 
that interchanging the limit and the summation is justified. To prove uniform 
convergence of the series in formula (3) on the interval [1, 2], we apply the Weierstrass 
M-test (see, e.g., [3]), using the series Enr-2 for comparison: 

0< - 
t' fI ( ( nx tA) dt f? (J| X1dUt) dt 

< xhlx1f|?(fcl) dct= _ __ *n 1 < n 

for 1 < x < 2. This completes the proof of the antisymmetric formula for Euler's 
constant. 
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Triangles with the Same Centroid 

AYOUB B. AYOUB 
Pennsylvania State University 

Abington College 
Abington, PA 19001 

Introduction A well known fact in Euclidean geometry is that the medians of a 
triangle intersect in one point, called the centroid. If G is the centroid of the triangle 
ABC, then G divides each of the medians AL, BN, and CK in the ratio 2: 1. This 
property is used to derive the algebraic relation, G = '(A + B + C), where A, B, C, 
and G are treated here as numbers in the complex plane [3]. Another known property 
of G, is that it is also the centroid of the medial triangle KLN [1], [2] (FIGURE la). In 
his Advanced Euclidean Geometry [4, p. 175], Roger Johnson brings to our attention 
the following pleasant result concerning G. 

THEOREM 1. If the vertices of a triangle lie on the sides of another, and divide themn 
in a fixed ratio, the triangles have the same centroid G (FIGURE lb). 

(a) (b) 
FIGURE 1 

Johnson provides a synthetic proof, which he attributes to the German geometer 
Wilhelm Fuhrmann (1833-1904). 

Generalization In this nlote, we generalize Theorem 1 as follows: 
THEOREM 2. If on the sides of an arbitrarty triangle ABC three similar triangles 

AKB, BLC, and CNA are drawn outward (or inward), then the triangles KLN arnd 
ABC have the .same centroid C (FIGURE 2a and 2b). 

C 

L 

N 

A B~~~~~~~~~~~~~~~~~~ 

(a) (b) 

FIGURE 2 
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This theorem may be interpreted in two different ways. The synthetic interpreta- 
tion is that the six medians, three of each of the triangles KLN and ABC, concur in 
the point G. The analytic interpretation is that the arithmetic mean of the complex 
numbers representing the vertices K, L, and N is the same as that of the vertices A, 
B, and C. We will prove Theorem 2 using complex arithmetic. 

Consider the points A, B, C, K, L, and N as numbers in the complex plane. The 
similarity of the triangles AKB, BLC, and CNA implies that for some fixed complex 
number Z 0, K-A = Z(B-A), L-B = Z(C-B), and N-C=Z(A-C). If 
these equations are added, it follows immediately that K + L + N = A + B + C, which 
completes the proof. The triangles AKB, BLC, and CNA will be outward (or inward) 
relative to the triangle ABC according to - iT < arg(Z) < 0 (or 0 < arg(Z) < iT). 
When arg(Z) = 0 or arg(Z) = iT, each of the triangles will degenerate into collinear 
line segments. In particular, if arg(Z) = 0 and IZI < 1, the points K, L, and N will 
divide AB, BC, and CA respectively in the same ratio and this represents the case of 
Theorem 1. 

Applications First, let us draw the three squares AA1 B2 B, BB1C2C, and CC1 A2 A 
externally on the sides AB, BC, and CA of an arbitrary triangle ABC. Denote the 
centers of the squares by K, L, and N respectively. Then by Theorem 2, the triangles 
ABC, KLN, A1B1C1, and A2B2C2 all have the same centroid G (see FIGURE 3). 

Second, suppose we draw equilateral triangles AC1 B, BA1C, and CB1 A externally 
on the sides of the triangle ABC. Denote the centroids of the equilateral triangles by 
K, L, and N respectively (see FIGURE 4). 

C, 

2 
1 B2 CA 

G ~~~~AB 

K 

FIGURE 3 FIGURE 4 

Theorem 2 implies that the triangles ABC, A1B,Cl, and KLN have the same 
centroid, G. The triangle KLN is sometimes called Napoleon's triangle. The French 
general is said to have proved that it is equilateral [2], [3], and [5]. 

The converses The converse of Theorem 1 asserts that if one triangle is inscribed 
in another, so that both have the same centroid, then the vertices of the former divide 
the sides of the latter in equal ratios. Johnson hints that this converse can be proved 
by reversing Fuhrmann's proof of Theorem 1. 

The converse of Theorem 2 may be stated as follows: If on the sides of an arbitrary 
triangle ABC, three triangles AKB, BLC, and CNA are drawn outward (or inward), 
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such that the triangles KLN and ABC have the same centroid, then the triangles 
AKB, BLC, and CNA are similar. We will give a counterexample to show that this 
converse is false. 

Let ABC be a scalene triangle with centroid G and circumcenter 0 (see FIGURE 5). 
Take an arbitraiy point K on the smaller arc AB of the circumcircle of triangle ABC. 
Join KG and extend it to E such that GE = 'KG. Join OE and erect on it at E a 
perpendicular that meets the circumcircle at L (on arc BC) and N (on arc AC). 

A BL 

K 
FIGURE 5 

It is easy to see that triangle KLN has G as its centroid. Hence triangles ABC and 
KLN have the same centroid. However, the triangles AKB, BLC, and CNA are not 
similar, because the angles AKB, BLC, and CNA are inscribed in unequal circular 
segments. 

Triangles with the same nine-point circle The circle that passes through the 
midpoints of the sides of a triangle is called its nine-point circle [2]. In FIGURE 6, 
triangles ABC and KLN are inscribed in a circle with center 0 and have the same 

L~~~~~~~ 

K 
FIGURE 6 

centroid G. Consequently, the two triangles have the same nine-point circle whose 
center O' divides OG externally in the ratio 3: 1 [1]. Now, if K moves along the 
circumcircle of the triangle ABC, then the infinitely many triangles such as KLN will 
have a common nine-point circle traced by the point E. In 1822, Karl Feuerbach of 
Germany proved that the nine-point circle of a triangle touches the incircle and the 
three excircles of the triangle [1], [4]. This theorem, together with the existence of 
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infinitely many triangles sharing the same nine-point circle, implies that this circle 
touches infinitely many incircles and excircles. 

Acknfvwledgment The author would like to thank the referees for their valuable suggestions. 
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Editor's Notes 

Articles in the December 1997 MAGAZINE drew several letters. Concerning a 
Proof Without Words (page 380), lIarold Boas wrote, 

Your readers may be interested to know that the PWW showing the area of a 
right triangle to be equal to the sum of the areas of two lunes ... was discovered in 
the 5th century BC by Hippocrates (the mathematician, not the physician)... 
The fame of Hippocrates indeed rests largely on his quadrature of lunes, the first 
rigorous determinations of areas of curves regions: see, for example, chapter 1 of 
the 1990 book Journey Through Genius, by William Dunham. 

Several readers commented on Thte truel (pp. 315-326), by D. M. Kilgour 
and S. J. Brams. Harold Boas wrote: 

The article... by D. M. Kilgour and S. J. Bramns rekindled a fond childhood 
memory: my father reading aloud A. P. Herbert's comic drama Fat King Mellon 
and Princess Caraway. Scene III features a humorous encounter in which the King 
(traveling incognito) aims his blunderbuss at the Princess (in disguise), who draws 
her bow at the highwayman, who in turn covers the King with his pistol. All fire at 
once, and the universally fatal results necessitate the intervention, deux ex 
rnachina, of the Fairy Gurgle to permit action to continue. The earliest (adrnittedly 
nonmathematical) reference I know to truels is this play, written for the 1924 
birthday of a ten-year-old girl, and published in 1927 by Oxford University Press. 

Editor's Notes continue on page 231 
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 Answers

 Solutions to the Quickies on page 226.

 A880. The right-hand side is clearly the number of one-to-one functions from an

 n-element set to itself.

 Since there are (n - k)' functions from an n-element set to an (n - k)-element

 set, and an n-element set has (k) subsets with (n - k) elements, the left-hand side

 is the number of onto functions from an n-element set to itself (by the inclusion-

 exclusion principle).

 Finally, since the one-to-one functions and the onto functions from an n-element

 set to itself are identical, equality follows.

 A881. The only four such functions are

 f(x, y) =x,f(x, y) =y,f(x, y) = min{x, y},f(x, y) = max{x, y}.

 Clearly f(x, y) = x = y on the line x = y. Let A = {(x, y):f(x, y) = x}. Then A is a

 closed set and its complement AC is the open set Ac = {(x, y):f(x, y) = y, x 0 y}.

 Similarly, B = {(x, y): f(x, y) =y} is closed and Bc = {(x, y):f(x, y) = x, x # y} is

 open. The open half-plane U ={(x, y): x > y} is a connected set. Since U is the

 disjoint union of the open sets U n Ac and U n BC, either U n Ac = 0 or U n Bc = 0.

 Thus, either f(x, y) = x or f(x, y) = y on U. Similarly, either f(x, y) = x or f(x, y)

 = y on {(x, y): x < y}. The four combinations of possibilities give rise to the four

 functions listed above, all of which are continuous.

 A882. The matrix A has q)7l(ll-)7l) right inverses over Fq. To see this, we note that,

 since AB = IM7 for some n X m matrix, B, A must have full rank m. Hence the

 nullspace of A has dimension n - in and consists of ql - )7 vectors. Therefore, the

 right inverses of A are precisely the (qI )l - matrices obtained from B by adding to

 each of the m columns of B any one of the ql - )7 vectors in the nullspace of A.

 Editor's Notes (continuedfrom page 224)

 Reader Paul Boisvert also commented on The truel, by Kilgour and Brams:

 It seems impossible to believe, but the sad truth is that the otherwise interesting

 article... is marred by a crippling flaw. [The authors] make reference to two

 Q. Tarantino films involving truels, but neglect to discuss the original, perfect, and

 still inimitable truel scene in filmic history: the climax of The Good, the Bad, and

 the Ugly. To compare Tarantino's glib, derivative efforts to Sergio Leone's ultimate

 confrontation among Eastwood, Van Cleef, and Wallach (forming, as they did, a

 human equilateral triangle inside the circular center of the barren graveyard ... ) is

 blasphemy. [Leone's truel] perfectly illustrates the way in which real life always

 escapes mathematical modeling. The one thing neither [the authors] nor Eli

 Wallach took into account was that one player might cheat by surreptitiously

 removing someone else's (Eli's) bullets. As Eli survived-proving that the best

 strategy may be to have no ammunition whatsoever-The Ugly added a new fillip

 to the theory, one that I hope the authors will consider in future aiticles.
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P ROBeL EMS 

GEORGE T. GILBERT, Editor 
Texas Christian University 

ZE-LI DOU, KEN RICHARDSON, and SUSAN G. STAPLES, Assistant Editors 
Texas Christian University 

Proposals 
To be considered for publication, solutions 
should be received by November 1, 1998. 

1549. Proposed by K. R. S. Sastry, Ban galore, India. 

Given a positive integer k, prove that for all sufficiently large x, there exist at least 
k primitive Pythagorean triangles whose sides all have lengths in the interval [x, 2 x]. 

1550. Proposed by Mihadly Bencze, Braqov, Romanaia. 

Let 1 < i < n, be complex and let Si =1 + Z2 + +z 1 < i < n. Prove that 
11 

isj - Zil < E ((n + I - k)lZkcl + (k - 2)lSkl)- 

1551. Proposed by Howard Morris, Gerniantown, Tennessee. 

For which values of a is 

lirnn2ln 2iT(n+ a) +l/2 e-tl- 
limo nn!I 

finite? 

1552. Proposed by Wiu Wei Chlao, Gua'ng Zhou Normnal College, Gtarng Zhou City, 
Gucang Dong Province, China. 

Find all functions f: 1R -> DR that satisfy 

f ( x+yf( )) =f( ) + ( Y) 

for all x and y. 

We invite readers to sutbmiiit problemiis believed to be new and appealing to stutdents and teachers of 
advancedl utnder-gradutate mi.athematics. Proposals miust, in general, be accot7mpanied by soltitions and by any 
bibliographical informntion that will assist the editors and referees. A problem7 submnitted as a Qutickie 
shotuld have an unexpected, succinct solution. 

Solutions shotdld be wtrittenz. in, a style appropriate for this MAGAZINE. Each solution. should begin on.S a 
separate sheet containing the solver's nanme and fill address. 

Solutions and netv proposals shoould be mailed to George T. Gilbert, Problems Editor, Department of 
Mathemantics, Box 298900, Texas Christian. University, Fort Worth, TX 76129, or mailed electronically 
(ideally as a LATEX file) to g.gilbert@tcu.edu. Readers who use e-mail should also provide an 
e-mail adddress. 
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1553. Proposed by Paul Zorn, St. Olaf College, Northfield, Minnesota. 

What complex numbers are the root of some polynomial with positive coefficients? 

Qu ickies 
Answers to the Quickies are on page 231 

Q880. Proposed by Ira Rosenholtz, Eastern Illinois University, Charleston, Illinois. 

Show that 
fl 

E ( -I 1) 
11 
( n )( - k ) tn !. 

Q881. Proposed by Sergei Ovchinnikov, San Francisco State University, San Fran- 
cisco, California. 

Describe all continuous functions f(x, y) of two real variables such that f(x, y) = x 
or f(x, y) = y for all (x, y) - R 

Q882. Proposed by Williaim P. Wardlow, U.S. Naval Academy, Annapolis, Mary- 
land. 

Let F, denote a field with q elements. Suppose that A is an m X n matrix over Fq 
that has a right inverse over F,. How many right inverses does A have over Fq? 

Solutions 

Three Intersecting Cevians June 1997 

1524. Proposed by Ted Zerger, Kansas WVesleyan University, Salina, Kansas. 

Given l\ ABC, let A', B', C' be the points on the sides BC, CA, AB, respectively, 
such that 

BA' CB' AC' 1 
BC AC = AB =t O<t<2 

Let A", B", C" be the points of intersection of AA' and CC', BB' and AA', CC' 
and BB ', respectively. Prove that the ratios 

AA": A" B": B" A' = BB": B" C": C" B' = CC": C" A": A" C' = t: 1 - 2t: t2. 
(A typographical error in the second display of the original statement has been 
corrected.) 

c 

B' c 

A"X" 
A C' B 
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I. Solution by Robert L. Young, Osterville, Massachusetts. 
Let 0 be any point in the plane of A ABC and let X denote the vector from 0 to X. 

The given imply A' = (1 - t)B + tC, B' = (1 - t)C + tA, C' = (1 - t)A + tB, and the 
existence of scalars A and /t such that 

A" = (1-A)A + AA' = (1-p)C+pyC'. (1) 

Substituting for A' and C', we get 

(1 - A)A + A(1 - t)B + AtC = - t)A + 4tttB + (1 -)C, 

or 

(1- A - pt+ p-t)(A- C) + (A - At- /ttt)(B - C) = 0, 

which implies A = t/8 and /t = (1 - t)/, where 8 = t2 - t + 1. Thus, equation (1) 
implies AA" = AAA' = tAA'/8 and CA" = ACA' = (1 - t)CC'/8. The symmetry 
of the problem implies AB" = (1 - t)AA'/8, hence A" B" = AB" - AA" = 
(1 - 2t)AA'/8 and B" A' = AA' - AB" = t2AA'/8. Therefore AA": A" B": B" A' 
-t:1 - 2t: t2. Similarly, BB": B"C" :C"B' = CC" :C" A": A"C' =t:1 -2tt2. 

II. Solution by Neela Lakshrnanain, University of Scranton, Scrainton, Pennsylvania. 
Applying Menelaus' theorem to A AA'B and the transversal CC', we have 

AA" A'C BC' AA" 1-t 
A"A' CBC'AAl Al (t) t = 1. 

Thus, AA"/A " A' = t/(1 - t)2, and hence AA"/AA' = t/(1 - t + t2). Likewise, by 
applying Menelaus' theorem to A AA'C and the transversal BB', we obtain 
AB"/B " A' = (1 - t)/t2, hence AB"/AA' = (1- t)/(1 - t + t2). It follows that 
A" B"/AA' = (1 - 2t)/(1 - t + t2) and B" A'/AA' = t2/(1 - t + t2). Therefore, 

AA": A" B": B" A' = t: 1 - 2t: t2. 

By symmetrical considerations, we get 

BB": B" C": C" B' = CC": C" A": A" C' = t: 1 - 2t: t2 

Also solved by J. C. Binz- (Switzerland), MAansur Boase (student, England), Sabi.n. Cauitis (Canada), 
Con. Am7aore Problemn Group (Denmark), Miguiel A-mengual Covas (Spain), Daniele Donini (Italy), David 
Doster, Robert L. Doulcette, Ragn.ar Dybvik (Norwcay), Milton P. Eisner, Hans Kappus (Swit.zerland), 
Atar Seni Mittal, Michael Nathanson, William A. Newco'mb, Jose H. Nieto (Venezuela), Stephen Noltie, 
P. E. Niiesch (Swvitzerlland), Gao Peng (graduate student), Ron Schr-yer (professor eineritus), Michael 
Vowe (Switzerland), David Zhtu, and the proposer. 

Fixed Ponts of a Bijection of the Symmetric Group June 1997 

1525. Proposed by Emneric Deutschl, Polytechnic University, Brooklyn, New York. 

Define a mapping f: S, -> S,, as follows. Given a permutation Xi of {1,2,.. ., n}, 
express it in cycle form, including any fixed elements, such that the smallest entry of 
each cycle appears last, and the last entries among cycles appear in increasing order. 
The permutation f(0T) is then defined by removing all inner parentheses and 
interpreting the result as the one-line representation of f(0T). In other words, the ith 
entry of the line is f(iT)(i). (For example, expressed in this cycle form, 
f((4, 6, 1)(2)(5 3)) = (4, 2, 6, 3, 1)(5).) Characterize those XT fixed by f, and determine 
their cardinality. 
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Soluttion by Jose H. Nieto, Maracaibo, Venezuela. 

The permutations fixed by f are those whose cycles are formed by consecutive 
integers, and their number is 2 - . 

If 'I E S,, is such that f0T) = iT, express it in cycle form as described in the 
statement of the problem. Its first cycle must be of the form (a,,..., ak) with ak = 1 
Since we have i(dai) = ac+ I =fGT)(i + 1) = IT(i + 1) for 1 < i < k - 1, it follows that 
a. = i + 1. Thus the first cycle is (2, 3. k, 1) (or simply (1) if k = 1). If k < n, the 
same reasoning shows that the second cycle is of the form (k + 2, k + 3,... 1, k + 1), 
and that all cycles are formed by consecutive integers in general. Conversely, if X E S, 
has this property, a direct verification shows that f0T)= =m 

All of these permutations may be generated as follows: write a left parenthesis 
followed by the numbers from 1 to n, separated by blank spaces, and close the 
sequence with a right parentheses. Choose any subset of the set of n - 1 spaces 
between consecutive integers, and write ")(" in each selected space. Thus we may 
obtain all the fixed elements of f, expressed as a product of cycles. Its number is 2 l 
since this is the number of subsets of a set with n - 1 elements. 

Also solved by Vic Abad, J. C. Bizn (Switzerland), David Callan, Con Amiore Problem GroL(p 
(Denmark), Robert L. Douzcette, Jerry G. Ianiii, loana Mihaila, Jean-Clatde Ndogmio (Souith, Africa), 
Allan Pederseni (Denmark), Gao Penig (graduate student), Western Maryland College Problemlzs Group, and 
the proposer. 

Bounded Solutions to a Linear Congruence June 1997 

1526. Proposed by Wu Wei Chao, He Nan Normnal University, Xin Xia'ng City, He 
Nan Province, China. 

Let p be an odd prime number, and let a and b be positive integers with 
1 < a < p. Find the number of ordered pairs (x, y) of positive integers such that p 
divides x + ay and x + y < bp. 

Solution by Vic Abad, University of Houston, Houston, Texas. 

The number of ordered pairs is (pb2 - 3b + 2)/2. 
First, fix x. Because the congruence x + ay 0 (mod p) defines a unique residue 

class of y (mod p), the number of values of y for which p divides x + ay and 
O < y< bp is b. Thus, the number of ordered pairs (x, y) with 0 < x < bp and 
O < y < bp for which p divides x + ay is (bp - 1)b - (b - 1). Partition these ordered 
pairs into three sets according to x + y < bp, x + y > bp, and x + y = bp. The set of 
(x, y) for which x + y < bp is in one-to-one correspondence with the set of (x', y') 
for which x' + y' > bp via the map x' = bp - x,y' = bp - y. For x + y = bp, the 
condition that p divides x + ay is equivalent to p dividing (a - l)y, or simply p 
dividing y. The number of such solutions is b - 1. Combining these facts, the 
number of ordered pairs with x + y < bp is 

[(bp - 1)b - (b - 1)] - (b - 1) pbh2 - 3b + 2 
2 2 

Also solvedl by J. C. Bintz (Switzerland), Mansur Boase (student, England), John Christopher, Con 
Amiore Problemn Group (Denmnark), Robert L. Doucette, Thomas R. Hagedorn, Jose H. Nieto (Venezuela), 
Allan Pedersen (Denmark), and the proposer. There were four incomplete solutions and one incorrect 
solution. 

Computing Terms in a Symmetric Matrix June 1997 

1527. Proposed by J. C. Binz, University of Bern, Bern, Switzerlcand. 
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For n a nonnegative integer, let A A = (a1; k , be the (n + 1) X (n + 1) 
matrix defined by aO k = ai0 = 1 and 

ai,k = ai k-l + hnai-,k-l (i, k ? 1). 

Show that A,, is symmetric, and evaluate a1 k 

I. Solution by Nicholas C. Singer, Annandale, Virginia. 

We show that 

j> 
( i)(k)j!i 

by showing that it satisfies the couiditions of the problem. This is symmetric in i and 
k, and equals 1 if i or k is 0. Next, 

ima4kJ =irn (i -1) k-i )iii (i 1)(k - 
iiiiai , lk -1=imn E ! (j )jflin E ( i 1) jl).ini 

= E (j l)(j-1)(j-l)!iini= E j )!ii.. 

Thus 

ai, k - + iaiai 1-= E (k)( k 1j + ( 
j?0 j ?1 

=1+ i (i) +[(j (1)+ 

=1+ j ; ;!-n,lj ( i 

II. Soluttion by Western Maryland College Problens Group, Westminster, Maryland. 

We show that 
i-in {i, k} 

ai; x, (i)j(k k)j 
nJ 

j=o 
j 

where (i)= i(i - 1)*.. (i -j + 1). To arrive at this expression for aik, we define the 
generating functions 

Ak(0t) Ea ki 
i =O 

The recursion for alk leads to 

Ak(t) = (1 +int) Ak1(t) = = (1 + mnt)k Ao(t) 

- ? ('jk)4initJ E n! 
j=O i 1=0 

The coefficient of t' can now be read off and after multiplying by i! we recover the 
stated expression for a,k. The symmetry follows for free. 
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Also solved by Vic Abad, Robert A. Agnew, Dale R. Buxske, David Callan., Con Amnore Problem Group 
(Denmiark), Robert L. Dotucette, Bassemit B. Ghalayini and Ajaj A. Tara.bay (Lebanon), Jose' H. Nieto 
(Vene-zuela), Allani Pedersen. (Denmnark), Gao Petng (graduate stu.iadent), Heitiz-Jiir-gen Seiffert (Germnzany), 
Michael Vowe (Switzerland), and thte proposer. 

Inequalities in a Convex n-gon June 1997 

1528. Proposed by Florin S. Pirva'nescu, Slatina, Romaiinia. 

Let M be a point in the interior of convex polygon A1 A2 ... A,. If dk is the 
distance from M to Ak Ak ? 1 ( A,, 1 = A1), show that 

(ci+ d)(d2+d3) ..(d, + dl) <2' cos - -MA, MA2. MA, 

and determine when equality holds. 

Soluttion by Heinz-jiirgen Seiffert, Berlin, Germnany. 
Set ak = / MAkAk-l and 13k = / MAkAk+l, k =1. n (AO =A,). We have 

dk = MAk + 1 sin ak+ 1 = MI/lAk sin Pk' which implies 

dck-1 + dk = MAk(sin ak + sin = 2MAk sin ak?2k COS ak k k=1. n. 

It follows that 

Hd (dk-1 + dk) =2'1 H MAk sin 2 cos 21 
k=i k=1 i 

Since the sine is strictly increasing and concave on (0, -/2), from the arithmetic 
mean-geometric mean inequality and Jensen's Inequality we get 

11.ak?/3ik -. (" ak +/3/ 1 J sin- 2 < sin"E Lj = cos (u/n), 

with equality if and only if al + 132 = a2 + /32 = = a,, + fi,, where we have used 
1;L1(a1- + /3k) = (n 2)-2. Moreover, we have 

akf3 ik H cos 2 <1 
k= 2 

with equality if and only if ak = f3k for k = 1, . . ., n. The desired inequality follows. 
Clearly, there is equality if Al A2 ... A, is regular and M is its center. Conversely, 

if equality holds, then from above we have ak = P3k = (1/2 - 1/ln)gT for k = 1, . . ., n. 
It then easily follows that A1A, = MA2 = = MA, and further that A1 A2 ... A,, is 
equilateral. Therefore, the convex polygon A1A2 ... A, must be regular. Now, it is 
easily seen that M must be the center. 

Comnment. Murray Klamkin observed that the result follows from the stronger 
inequality with dk redefined to be the length of the angle bisector of i Ak MAk + 1, 
referring us to D. S. Mitrinovic, J. E. Pecaric, and V. Volenic, Recent Advances in 
Geometric Inequalities, p. 423. 

Also solved by Mansur Boase (student, England), Coni. Amnot-e Problem7z Gr-otup (Denmnark), Robert L. 
Douicette, Lortaitne L. Foster and Tutng-Po Lin, Murray S. KlMakin, Can. A. Minzh (graduate stldeit), Jose 
H. Nieto (Venezuela), Stepheni, Noltie, Allan Pedersen (Denmark), Gao Peng (graduate student), Achilleas 
Sinefnkopou.lo.s (stuldent, Greece), MicAihael Votwe (Switzerland.), Robert L. Youxng, and the proposer. 
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Answers 
Solutions to the Quickies on page 226. 

A880. The right-hand side is clearly the number of one-to-one functions from an 
n-element set to itself. 

Since there are (n - k)' functions from an n-element set to an (n - k)-element 
set, and an n-element set has (k) subsets with (n - k) elements, the left-hand side 
is the number of onto functions from an n-element set to itself (by the inclusion- 
exclusion principle). 

Finally, since the one-to-one functions and the onto functions from an n-element 
set to itself are identical, equality follows. 

A881. The only four such functions are 

f(x, y) =x,f(x, y) =y,f(x, y) = min{x, y},f(x, y) = max{x, y}. 

Clearly f(x, y) = x = y on the line x = y. Let A = {(x, y):f(x, y) = x}. Then A is a 
closed set and its complement AC is the open set Ac = {(x, y):f(x, y) = y, x 0 y}. 
Similarly, B = {(x, y): f(x, y) =y} is closed and Bc = {(x, y):f(x, y) = x, x # y} is 
open. The open half-plane U ={(x, y): x > y} is a connected set. Since U is the 
disjoint union of the open sets U n Ac and U n BC, either U n Ac = 0 or U n Bc = 0. 
Thus, either f(x, y) = x or f(x, y) = y on U. Similarly, either f(x, y) = x or f(x, y) 
= y on {(x, y): x < y}. The four combinations of possibilities give rise to the four 
functions listed above, all of which are continuous. 

A882. The matrix A has q)7l(ll-)7l) right inverses over Fq. To see this, we note that, 
since AB = IM7 for some n X m matrix, B, A must have full rank m. Hence the 
nullspace of A has dimension n - in and consists of ql - )7 vectors. Therefore, the 
right inverses of A are precisely the (qI )l - matrices obtained from B by adding to 
each of the m columns of B any one of the ql - )7 vectors in the nullspace of A. 

Editor's Notes (continuedfrom page 224) 
Reader Paul Boisvert also commented on The truel, by Kilgour and Brams: 

It seems impossible to believe, but the sad truth is that the otherwise interesting 
article... is marred by a crippling flaw. [The authors] make reference to two 
Q. Tarantino films involving truels, but neglect to discuss the original, perfect, and 
still inimitable truel scene in filmic history: the climax of The Good, the Bad, and 
the Ugly. To compare Tarantino's glib, derivative efforts to Sergio Leone's ultimate 
confrontation among Eastwood, Van Cleef, and Wallach (forming, as they did, a 
human equilateral triangle inside the circular center of the barren graveyard ... ) is 
blasphemy. [Leone's truel] perfectly illustrates the way in which real life always 
escapes mathematical modeling. The one thing neither [the authors] nor Eli 
Wallach took into account was that one player might cheat by surreptitiously 
removing someone else's (Eli's) bullets. As Eli survived-proving that the best 
strategy may be to have no ammunition whatsoever-The Ugly added a new fillip 
to the theory, one that I hope the authors will consider in future aiticles. 
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R EV IEWS 

PAUL J. CAMPBELL, editor 
Beloit College 

1997-98: Universitat Augsburg, 
Germany 

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for 
this section to call attention to interesting mathematical exposition that occurs outside the 
mainstream of mathematics literature. Readers are invited to suggest items for review to!the 
editors. 

Wells, Charles, The Handbook of Mathematical Discourse, Version 0.71, March 1998, http: 
//wvw-math.cwru.edu/-cfw2/abouthbk.htm, or email the author (cf w2po. cwru.edu) for 
a printed copy; x + 135 pp. Communicating mathematics: Useful ideas from computer 
science, American Mathematical Monthly 102 (1995) 397-408. Bagchi, Atish, and Charles 
Wells, On the communication of mathematical reasoning, Primus 8 (1) (March 1998) 15- 
27. Bagchi, Atish, and Charles Wells, Varieties of mathematical prose. The papers are 
available at www. cwru. edu/artsci/math/wells/pub/papers. html. 

Is mathematics a foreign-or even alien-language for students? Many think so, and au- 
thor Wells concurs. He and colleague Bagchi have begun a long-overdue investigation of 
the mathematical register, the choice of English and symbolism used in communication of 
mathematics. Wells's book-in-the-making is a dictionary of rhetorical terms and compila- 
tion of their usage in mathematical exposition-an attempt to make mathematicians aware 
of how they talk and write, particularly the ways that vary from usage by others. Wells 
tries to put a name to each kind of usage, employing terms from standard rhetoric (e.g., 
enthymeme), from mathematical education (malrule), and from his own colorful coinage 
(existential bigamy, jump the fence). Students too should find the book useful. Wells solic- 
its contributions of citations and suggestions from readers. While the book is descriptive, 
the papers by Wells and with colleague Bagchi make specific normative recommendations 
about oral and written mathematical exposition. (Fortunately, the book and papers are 
available electronically in dvi, PS, and pdf formats. Too many other documents on the Web 
are available only by inconvenient multiple downloads in HTML, a few pages at a time, 
with equations as individual figures that print ugly.) 

Maligranda, Lech, Why Holder's inequality should be called Rogers' inequality, Mathemat- 
ical Inequalities and Applications 1 (1) (January 1998) 69-83. 

The inequality 
n 1/p l/q 

Zakbk < ap bq) 
k=1 k=l k=1 

true for ak, bk > 0, p > 1, and l/p + 1/q = 1, was proved in slightly different form by 
Leonard J. Rogers (of Rogers-Ramanujan identities fame) in 1888, a year before Otto 
H6lder proved a more general result. Although H6lder cited Rogers, subsequent authors 
named the inequality after Holder, who had published in a more accessible journal. Author 
Maligranda documents the history and mathematics involved and urges that the result 
be renamed the Rogers-Holder inequality. Perhaps some enterprising soul will start a 
Web site to collect together all such suggested revisions of history of mathematics, despite 
Fejer's caution that "the history of mathematics serves to prove that nobody has discovered 
anything: there was always somebody who knew it before." (Thanks to author Maligranda 
at lechOsm. luth. se for volunteering a reprint from the first issue of this new journal.) 
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Forbes, Tony, Ten Primes: A search for ten consecutive primes in arithmetic progression: 
Success!!!, http://www.ltkz.demon.co.uk/ar2/10primes.htm. 

In the April 1998 issue of THIS MAGAZINE, I reported on the discovery of nine consecu- 
tive primes in arithmetic progression, suggesting that you could be confident that the record 
would stand for some time. Wrong! However, the team believes that finding a sequence of 
eleven is "far too difficult," in part because the minimum progression gap becomes 2,310 
instead of 210. "We need a new idea, or a trillion-fold increase in computer speeds. So 
we expect the Ten Primes record to stand for a long time to come." This time, it's their 
prediction, not mine. 

Avnir, David, Ofer Biham, Daniel Lidar, and Ofer Malcai, Is the geometry of nature frac- 
tal?, Science 279 (2 January 1998) 39-40. 

Answer: Maybe no, but we will keep saying that it is. "Do power laws that are limited 
in range represent fractals? Is it justified to term them as such?" The authors refer to 
calculating a fractal dimension D from a relation of the form P = krf(D), where f(D) 
is a simple function of D. A fit of data to such a law does not imply fractality over 
many orders of magnitude; in few reports in the physics literature does a fit span more 
than two orders of magnitude and in no case more than three. Also, few such reports 
have any theoretical backing. However, such laws can be useful on their own, without 
the trendy "fractal" label. Moreover, "[s]everal key processes involving equilibrium-critical 
phenomena (in magnets, liquids, percolations, and phase transitions, for example) and some 
nonequilibrium growth models (such as aggregation) are backed by intrinsically scale-free 
theories and lead therefore to power-law scaling behavior on all scales." 

Cipra, Barry, Proving a link between logic and origami, Science 279 (6 February 1998) 
804-805. 

Origami is the art of folding shapes (e.g., peace cranes) from a square of paper. It involves 
several skills: devising a pattern and sequence of creases to create a shape, discerning from 
the crease lines the order of folding (I find this nontrivial even for roadmaps), and predicting 
properties of the folded object from the crease pattern (e.g., a roadmap is supposed to fold 
flat). The question of whether a pattern can be folded flat turns out to be NP-complete. 
Barry Hayes (Placeware Inc., Mountain View, Calif.) and Marshall Bern (Xerox Palo 
Alto Research Center) translated logical expressions into crease patterns and showed that 
the flat-folding problem is equivalent to the NP-hard problem called not-all-tirue 3-SAT. 
This problem is, given a sentence in propositional logic consisting of three-variable clauses, 
in each of which not all three variables are assigned True, determine if there is a truth- 
assignment that makes the sentence true. 

Cipra, Barry, Sieving prime numbers from thin ore, Science 279 (2 January 1998) 31. 

A mathematical sieve is an algorithm to eliminate non-primes from a sequence. For exam- 
ple, the Euclidean sieve, applied to 2 through 100, first eliminates all multiples of 2, then 
all remaining multiples of 3, and so on. Stopping after eliminating multiples of 5 gives 
an estimate of 28 for the number of primes; the sieve fails to eliminate only 49, 77, and 
91. John Friedlander (University of Toronto) and Henryk Iwaniec (Rutgers University) 
have refined the asymptotic sieve, developed by E. Bombieri in the 1970s, to show that 
numbers of the form a2 + b4-a sequence with asymptotic density zero-include infinitely 
many primes. The peculiar form of a2 + b4 facilitates use of Gaussian integers (of the form 
a + bVcT) and theory from algebraic number theory. Tantalizing in their simplicity are 
such open problems as whether numbers of the form n2 + 1 include an infinite number of 
primes, or if each interval between consecutive squares must contain a prime. 
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Twenty-Sixth Annual USA Mathematical Olympiad - 

Problems and Solutions 

1. Let P, P2, P3)... be the prime numbers listed in increasing order, and let xo 
be a real number between 0 and 1. For positive integers k, define 

ro if Xk1 =0, 
Xk ={Pk}ifk$0 

X k-1} 

where {x} denotes the fractional part of x. (The fractional part of x is given by 
x - LxJ where LxJ is the greatest integer less than or equal to x.) Find, with proof, 
all xo satisfying 0 < xo < 1 for which the sequence XO, X1, x2,... eventually becomes 
0. 
Solution. The sequence eventually becomes 0 if and only if xo is a rational number. 
First we prove that, for k > 1, every rational term Xk has a rational predecessor 

Xk-l. Suppose Xk is rational. If Xk = 0 then either Xk1 = 0 or Pk/Xk-1 is a 
positive integer; either way, Xk1 is rational. If Xk is rational and nonzero, then the 
relation 

Xk = {Pk Pk- 
Pk yields Xk-1 

Pk 

Xk-1 Xk-1 Xk-1 Xk + lPk 
_Xk-12 

which shows that Xk1 is rational. Since every rational term Xk with k > 1 has 
a rational predecessor, it follows by induction that, if Xk is rational for some k, 
then xo is rational. In particular, if the sequence eventually becomes 0, then xo is 
rational. 
To prove the converse, observe that if Xk-l = m/n with 0 < m < n, then Xk - 

r/m, where r is the remainder that results from dividing nPk by m. Hence the 
denominator of each nonzero term is strictly less than the denominator of the term 
before. In particular, the number of nonzero terms in the sequence cannot exceed 
the denominator of xo. 
Note that the above argument applies to any sequence {Pk} of positive integers, 

not just the sequence of primes. 

2. Let ABC be a triangle, and draw isosceles triangles BCD, CAE, ABF ex- 
ternally to ABC, with BC, CA, AB as their respective bases. Prove that the lines 

through A, B, C perpendicular to the lines EF, FD, DE, respectively, are concur- 
rent. 
Solution. We first show that for any four points W, X, Y, Z in the plane, the lines 

WX and YZ are perpendicular if and only if 

Wy2 - WZ2 = Xy- x_ XZ2 

234 

This content downloaded from 139.80.123.49 on Sun, 15 Nov 2015 09:31:31 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VOL. 71, NO. 3, JUNE 1998 235 

To prove this, introduce Cartesian coordinates such that W = (0,0), X = (1,0), 
Y = (xl,yl), and Z = (x2,y2). Then (*) becomes 

2 2 2 2= -~~1) - -2( X1 +Y X2- Y2 ( ( 1)2+y_ (X2 1 y22) 

which upon cancellation yields x1 = x2. This is true if and only if line YZ is 
perpendicular to the x-axis WX. 

F 
A 

D E 

C 

If P is the intersection of the perpendiculars from B and C to lines FD and DE, 
respectively, then the fact noted above yields 

PF2 - PD2 = BF2 - BD2, and PD2 - pE2 = CD2 - CE2 

From the given isosceles triangles, we have BF = AF, BD = CD, and CE = AE. 
Therefore 

PF2 -PE2 =AF2 -AE2. 

Hence line PA is also perpendicular to line EF, which completes the proof. 
Second Solution: Let C1 be the circle with center D and radius BD, C2 the circle 

with center E and radius CE, and C3 the circle of center F and radius AF. The 
line through A and perpendicular to EF is the radical axis of circles C2 and C3, the 
line through B and perpendicular to DF is the radical axis of circles Ci and C3, and 
the line through C and perpendicular to DE is the radical axis of circles C1 and C2. 
The result follows because these three radical axes meet at the radical center of the 
three circles. 

3. Prove that for any integer n, there exists a unique polynomial Q with coeffi- 
cients in {O, 1,... ,9} such that Q(-2) = Q(-5) = n. 
Solution. First suppose there exists a polynomial Q with coefficients in {O, 1, ... , 9} 

such that Q(-2) = Q(-5) = n. We shall prove that this polynomial is unique. By 
the Factor Theorem, we can write Q(x) = P(x)R(x) + n where P(x) = (x + 2)(x + 
5) = x2 + 7x+ 10 and R(x) = rO +rlx+r2x2+*** is a polynomial. Then rO,r1, r2,... 
are integers such that 

10ro+n E {0,1,... ,9}) lOrk +7rk-1 +rk-2 E {0,1,... ,9}, k> 1 (*) 

(with the understanding that r-1 = 0). For each k, (*) uniquely determines rk once 
rj is known for all j < k. Uniqueness of R, and therefore of Q, follows. 
Existence will follow from the fact that for the unique sequence {rk} satisfying 

(*), there exists some N such that rk = 0 for all k > N. First note that {rk} is 
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bounded, since Irol, Iri < B and B > 9 imply IrkI < B for all k. This follows by 
induction, using lOirkI < 7Irk -1 + Irk-21 + 9 < lOB. More specifically, if ri < M 
for i = k - 1, k - 2, then 

7rk-1 rk-2 -4M rk?- 10 10- 5' 

while if ri > L for i = k - 1, k - 2, then 

rk < - 7rk1 k-2 + 9 < 4L 9 
- 1 0 1 0 1 0 1 0 10' 

Since the sequence {rk} is bounded, we can define Lk = min{rk, rk-1,.. } and 
Mk = max{rk, rk+1, .. }. Clearly Lk < Lk+, and Mk > Mk+l for all k. 
Since Lk < Mk for all k, the non-decreasing sequence {Lk} must stop increasing 

eventually, and, similarly, the non-increasing sequence {Mk} must stop decreasing. 
In other words, there exist L, M, N such that Lk = L and Mk = M for all k > N. 
Certainly L < M, and M > 0, since no three consecutive terms in {rk} can be 
negative, but the above arguments also imply L > -4M/5 and M < -4L/5 + 9/10. 
A quick sketch (shown below) shows that the set of real pairs (L, M) satisfying 
these conditions is a closed triangular region containing no lattice points other than 
(0, 0). It follows that rk = 0 for all k > N, proving existence. 

M 

L 

4. To clip a convex n-gon means to choose a pair of consecutive sides AR, BC 
and to replace them by the three segments AM, MN, and NC, where M is the 
midpoint of AB and N is the midpoint of BC. In other words, one cuts off the 
triangle MBN to obtain a convex (n + 1)-gon. A regular hexagon P6 of area 1 is 
clipped to obtain a heptagon P7. Then P7 is clipped (in one of the seven possible 
ways) to obtain an octagon P8, and so on. Prove that no matter how the clippings 
are done, the area of PPn is greater than 1/3, for all n > 6. 
Solution. The key observation is that for any side S of )P6, there is some sub- 

segment of S that is a side of PPn. (This is easily proved by induction on n.) Thus 
'Pn has a vertex on each side of P6. Since PPn is convex, it contains a hexagon Q 
with (at least) one vertex on each side of P6. (The hexagon may be degenerate, as 
some of its vertices may coincide.) 
Let P6 = A1A2A3A4A5A6, and let Q = B13B2B3B4B5B6, with Bi on AjAj+j 

(indices are considered modulo 6). The side BjBj+j of Q is entirely contained 
in triangle AiAi+iAi+2, so Q encloses the smaller regular hexagon R (shaded in 
the diagram below) whose sides are the central thirds of the segments AjAi+2, 
1 < i < 6. The area of 1? is 1/3, as can be seen from the fact that its side 
length is 1/v/i times the side length of P6, or from a dissection argument (count 
the small equilateral triangles and halves thereof in the diagram below). Thus 
Area(Pn) > Area(Q) >: Area(R) = 1/3. We obtain strict inequality by observing 
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that Pn is strictly larger that Q: if n 6, this is obvious; if n > 6, then PPn cannot 
equal Q because PPn has more sides. 

A3 A2 

A4 : Al 

A5 A6 

Note. With a little more work, one could improve 1/3 to 1/2. The minimal area 
of a hexagon Q with one vertex on each side of P6 is in fact 1/2, attained when the 
vertices of Q coincide in pairs at every other vertex of P6, so the hexagon Q degen- 
erates into an equilateral triangle. If the conditions of the problem were changed so 
that the "cut-points" could be anywhere within adjacent segments instead of just 
at the midpoints, then the best possible bound would be 1/2. 

5. Prove that, for all positive real numbers a, b, c, 

(a3 + b3 + abc)-1 + (b3 + c3 + abc)-1 + (c3 + a3 + abc)-1 < (abc) 1. 

Solution. The inequality (a - b)(a2 - b2) > 0 implies a3 + b3 > ab(a + b), so 

1 1 c 
a3 + b3 + abc -ab(a + b) + abc abc(a + b + c) 

Similarly 

1 < 1 _ a 
b3 +C3 + abc - bc(b + c) + abc abc(a + b + c)' 

and 

1 1 b 
c3+ a3+ abc - ca(c + a) + abc abc(a + b + c) 

Thus 

1<1 1 a+b+c 1 
a3+ b3+ abc b + c3+ abc c3+ a3+ abc-abc(a + b + c) abc 

6. Suppose the sequence of nonnegative integers a,, a2,... , a1997 satisfies 

ai + aj aij < ai + aj + 1 

for all i, j > 1 with i + j < 1997. Show that there exists a real number x such that 
an = Lnxj (the greatest integer < nx) for all 1 < n < 1997. 
Solution. Any x that lies in all of the half-open intervals 

In[ an n ) =1 ,2, ... ,1997 
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will have the desired property. Let 

L = max an-a and U mn an+1 aq-+ 
1<n<1997 n p 1<n<1997 n q 

We shall prove that an < a , + 1 or, equivalently, 
n m 

man < n(am + 1) (*) 

for all m, n ranging from 1 to 1997. Then L < U, since L > U implies that (*) is 
violated when n = p and m = q. Any point x in [L, U) has the desired property. 
We prove (*) for all m, n ranging from 1 to 1997 by strong induction. The base case 

m = n = 1 is trivial. The induction step splits into three cases. If m = n, then (*) 
certainly holds. If m > n, then the induction hypothesis gives (m-n)an < n(am_n+ 
1), and adding n(am_n + an) < nam yields (*). If m < n, then the induction 
hypothesis yields man-n < (n - m)(am + 1), and adding man < m(am + an-m + 1) 

gives (*). 

Thirty-Eighth Annual International Mathematical 
Olympiad - Problems 

1. In the plane the points with integer coordinates are the vertices of unit squares. 
The squares are colored alternately black and white (as on a chessboard). For any 
pair of positive integers m and n, consider a right-angled triangle whose vertices 
have integer coordinates and whose legs, of lengths m and n, lie along edges of the 
squares. Let Si be the total area of the black part of the triangle and S2 the total 
area of the white part. Let 

f(m, n) = IS1 - S21. 

(a) Calculate f(m, n) for all positive integers m and n which are either both even 
or both odd. 

(b) Prove that f(m, n) < Imax{m, n} for all m and n. 

(c) Show that there is no constant C such that f(m, n) < C for all m and n. 

2. Angle A is the smallest angle in triangle ABC. Points B and C divide the 
circumcircle of the triangle into two arcs. Let U be an interior point of the arc 
between B and C which does not contain A. The perpendicular bisectors of AB 
and AC meet the line AU at V and W, respectively. Lines BV and CW meet at 
T. Show that 

AU = TB + TC. 

3. Let x1, x2,... ,xn be real numbers satisfying the conditions: lx1 + x2 + * + 
xnI = 1 and Ixii < (n+1)/2 for i = 1, 2,... ,n. Show that there exists a permutation 
Yi, Y2, ..., Yn of xl, x2,.. . , xn such that 

+2 
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4. An n x n matrix (square array) whose entries come from the set S = {1, 2,.. ., 2n- 

1} is called a silver matrix if, for each i = 1, 2, ... , n, the ith row and ith column 
together contain all elements of S. Show that 

(a) there is no silver matrix for n = 1997; 

(b) silver matrices exist for infinitely many values of n. 

5. Find all pairs (a, b) of positive integers that satisfy the equation ab = ba. 

6. For each positive integer n, let f (n) denote the number of ways of representing 
n as a sum of powers of 2 with nonnegative integer exponents. Representations 
which differ only in the ordering of their summands are considered to be the same. 
For instance, f (4) = 4 because the number 4 can be represented in the following 
four ways: 4; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1. Prove that for every integer n > 3, 

2n /4 < f (2 n) < 2n /2 

Notes 
The top eight students on the 1997 USAMO were (in alphabetical order): 

Carl J. Bosley Topeka, KS 
Li-Chung Chen Cupertino, CA 
John J. Clyde New Plymouth, ID 
Nathan G. Curtis Alexandria, VA 
Kevin D. Lacker Cincinnati, OH 
Davesh Maulik Roslyn Heights, NY 
Josh P. Nichols-Barrer Newton Center, MA 
Daniel P. Stronger New York, NY 

Josh Nichols-Barrer was the winner of the Greitzer-Klamkin award, given to the 
top scorer on the USAMO. Members of the USA team at the 1997 IMO (Mar del 
Plata, Argentina) were Carl Bosley, Li-Chung Chen, John Clyde, Nathan Curtis, 
Josh Nichols-Barrer, and Daniel Stronger. Bosley and Curtis both received gold 
medals, while Chen, Clyde, Nichols-Barrer, and Stronger received silver medals. In 
terms of total score, the highest ranking of the eighty-two participating teams were 
as follows: 

China 223 
Hungary 219 
Iran 217 
United States 204 
Russia 204 

Ukraine 195 
Bulgaria 191 
Romania 191 
Australia 187 
Vietnam 183 

The 1997 USA Mathematical Olympiad was prepared by Titu Andreescu, Elgin 
Johnston, Jim Propp, Cecil Rousseau (chair), Alexander Soifer, Richard Stong, 
and Paul Zeitz. The training program to prepare the USA team for the IMO (the 
Mathematical Olympiad Summer Program) was held at the University of Nebraska, 
Lincoln, NE. Titu Andreescu (Director), Fan Chung, Zuming Feng, Razvan Gelca, 
Elgin Johnston, and Kiran Kedlaya served as instructors, assisted by Jeremy Bem 
and Jonathan Weinstein. 
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The booklet Mathematical Olympiads 1997 presents additional solutions to prob- 
lems on the 26th USAMO and solutions to the 38th IMO. Such a booklet has been 
published every year since 1976. Copies are $5.00 for each year 1976-1997. They 
are available from: 

Dr. Walter Mientka, Department of Mathematics, University of Ne- 
braska, Lincoln, NE 68588-0658. 

The USA Mathematical Olympiad, participation of the US team in the Interna- 
tional Mathematical Olympiad, and the sequence of examinations leading to quali- 
fication for these olympiads are under the administration of the M.A.A. Committee 
on American Mathematical Competitions, and these activities are sponsored by 
eight organizations of professional mathematicians. For further information about 
this sequence of examinations, contact the Executive Director of the Committee, 
Professor Mientka, at the above address. 
This report was prepared by Titu Andreescu, Elgin Johnston, and Cecil Rousseau. 

Letter to the Editor 

Dear Editor: 
Mark Krusemeyer's recursively defined bijection between two manifestations of 

the Catalan numbers (A parenthetical note (to a paper of Guy), this MAGAZINE, 
October 1996, pp. 257-260) also has a simple explicit description as follows. Given a 
CG-arrangement (legal arrangement of pairs of empty parentheses), first delete the 
leftmost left parenthesis, change each right parenthesis to a letter (x, say), and add 
a letter at the end. Then insert right parentheses anew (in the only way possible) 
to produce a legal bracketing of the letters. For example, ()()(()) -+ x(x((xxx -+ 
x(x((xx)x)) agrees with [1 [1 [ [1 -l aLbLLcdJeJJ in Krusemeyer's table for n = 4. 
Expressed this way, the bijection's inverse becomes obvious. (This construction is 
implicit in an argument on page 54 of Advanced Combinatorics, Louis Comtet, 
D. Reidel, Boston, 1974.) 

It is fairly easy to show the construction works: the first step either yields a mere 
xx, and no parenthesizing is needed, or else there must be at least one occurrence 
of (xx, and a right parenthesis must be inserted immediately after it; then we treat 
this (xx) as a single x and proceed by induction. 

That our mapping (say 0) agrees with Krusemeyer's F can also be established 
by induction. The base cases may be verified directly. For the induction step, it is 
helpful to let 4 denote the initial mapping (before the right parentheses, or right 
floor symbols in Krusemeyer's notation, are inserted) and to consider four cases 
for a = ,/31-y, according as the CG-arrangements ,3 and -y are empty or not. For 
example, if 3 54 0, y 0 0, then a looks like r ** *I*11 **1 where the asterisks denote 

any number (possibly 0) of ceiling symbols. By definition, Oa is L L 

where the asterisks are now letters or left floors. Also, 46,B and O-y appear in 4acz 
as indicated. Finally, inserting the right floors (in the only way possible) yields 
Oa = LkBfl Lq-yJ and the induction step follows in this case. The other cases are 
similar. 

David Callan 
Dept. of Statistics, Univ. of Wisconsin, Madison, WI 53706-1693 
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