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ARTICLES

Liu Hui and the First Golden Age
of Chinese Mathematics

PHILIP D. STRAFFIN, JR.

Beloit College
Beloit, W1 53511

Introduction

Very little is known of the life of Liu Hui, except that he lived in the Kingdom of Wei
in the third century A.D., when China was divided into three kingdoms at continual
war with one another. What is known is that Liu was a mathematician of great power
and creativity. Liu’s ideas are preserved in two works which survived and became
classics in Chinese mathematics. The most important of these is his commentary,
dated 263 A.D., on the Jiuzhang suanshu, the great problem book known in the West
as the Nine Chapters on the Mathematical Art. The second is an independent work on
mathematics for surveying, the Haidao suanjing, known as the Sea Island Mathemati-
cal Manual.

In this paper I would like to tell you about some of the remarkable results and
methods in these two works. I think they should be more widely known, for several
reasons. First, we and our students should know more about mathematics in other
cultures, and we are probably less familiar with Chinese mathematics than with the
Greek, Indian, and Islamic traditions more directly linked to the historical develop-
ment of modern mathematics. Second, Western mathematicians who do know
something about the Chinese tradition often characterize Chinese mathematics as
calculational and utilitarian rather than theoretical. Chinese mathematicians, it is said,
developed clever methods, but did not care about mathematical justification of those
methods. For example,

Mathematics was overwhelmingly concerned with practical matters that
were important to a bureaucratic government: land measurement and
surveying, taxation, the making of canals and dikes, granary dimensions,
and so on... Little mathematics was undertaken for its own sake in China.
[2, p. 26]

While there is justice in this generalization, Liu Hui and his successors Zu
Chongzhi and Zu Gengzhi were clearcut exceptions. Their methods were different
from those of the Greeks, but they gave arguments of cogency and clarity which we
can honor today, and some of those arguments involved infinite processes which we
recognize as underlying the integral calculus.

My final reason is that I think mathematical genius should be honored wherever it
is found. I hope you will agree that Liu Hui is deserving of our honor.

To understand the context of Liu’s work, we must first consider the state of Chinese
mathematical computation in the third century A.D. We will then look at the general
nature of the Nine Chapters and Liu’s commentary on it, and at Liu’s Sea Island
Mathematical Manual. 1 will then focus on three of Liu’s most remarkable achieve-
ments in geometry—his calculation of 7, his derivation of the volume of pyramidal
solids, and his work on the volume of a sphere and its completion by Zu Gengzhi.

163
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Chinese Calculation in the First Century A.D.

From at least the period of the Warring States (475-221 B.C.) a base ten positional
number system was in common use in China [12]. Calculations were done using rods
made from bone or bamboo, on a counting board marked off into squares. The
numerals from 1 to 9 were represented by rods, as in Ficure 1. Their placement in
squares, from left to right, represented decreasing powers of ten. Rods representing
odd powers of ten were rotated 90° for clarity in distinguishing the powers. A zero was
represented simply by a blank square, called a kong, where the marking into squares
prevented the ambiguity sometimes present in, say, the Babylonian number system.
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FIGURE 1
Numerals and the division algorithm.

There were efficient algorithms for addition, subtraction, multiplication, and divi-
sion. For example, the division algorithm is shown in Ficure 1, except that you should
imagine the operations being done rapidly with actual sticks. Notice the close
relationship to our modern long division algorithm, although subtraction is easier
because sticks are physically removed. In fact, it is identical to the division algorithm
given by al-Khwarizmi in the ninth century and later transmitted to Europe, raising
the complicated problem of possible transmission through India to the West [12]. (See
[17] for a conservative discussion.)

Notice how the answer 7265 ends up with 726 in the top row, and then 4 above 9.
This led Chinese calculators to represent fractions by placing the numerator above the
denominator on the counting board. By the time of the Nine Chapters there was a
completely developed arithmetic of fractions: they could be multiplied, divided,
compared by cross multiplication, and reduced to lowest form using the “Euclidean

algorithm” to find the largest common factor of the numerator and denominator.

Addition was performed as - + < = ad + be
b d bd

necessary. In the Nine Chapters, 160 of the 246 problems involve computations with
fractions [11].

We will see that Chapter Eight of the Nine Chapters solves systems of linear
equations by the method known in the West as “Gaussian Elimination” after C. F.
Gauss (1777-1855), which, of course, involves subtracting one row of numbers from
another. In the course of such calculations, it is inevitable that negative numbers will
arise. This presented no problems to Chinese calculators: two colors of rods were
used, and correct rules were given for manipulating the colors. Liu Hui suggested in
his commentary on the Nine Chapters that negative numbers be treated abstractly:

, and then the fraction was reduced if
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When a number is said to be negative, it does not necessarily mean that
there is a deficit. Similarly, a positive number does not necessarily mean
that there is a gain. Therefore, even though there are red (positive) and
black (negative) numerals in each column, a change in their colors
resulting from the operations will not jeopardize the calculation. [17,
pp- 201-202]

Perhaps most remarkably, Chinese mathematicians had developed by the time of
the Nine Chapters efficient algorithms for computing square roots and cube roots of
arbitrarily large numbers. The algorithm for the square root computed the root digit
by digit, by the same method which used to be taught in American schools before the
coming of the calculator. Martzloff [17] works through an example, and Lam [11]
shows how it would look on a counting board. The algorithm for finding cube roots
was similar, although, of course, more complicated.

In other words, by the time of the Nine Chapters the Chinese had developed a
number system and a collection of calculational algorithms essentially equivalent to
our modern system, with the exception of decimal fractions.

Nine Chapters on the Mathematical Art

Nine Chapters on the Mathematical Art is a compilation of 246 mathematical
problems loosely grouped in nine chapters. Some of its material predates the great
book-burning and burial-alive of scholars of 213 B.C., ordered by emperor Shih
Huang-ti of the Qin dynasty. Indeed, Liu Hui writes in the preface of his commen-
tary:

In the past, the tyrant Qin burnt written documents, which led to the
destruction of classical knowledge ... Because of the state of deterioration
of the ancient texts, Zhang Cang and his team produced a new version. ..
filling in what was missing. [17, p. 129]

It is believed that the Nine Chapters were put in their final form sometime before
100 A.D. It “became, in the Chinese tradition, the mandatory reference, the classic of
classics.” [17, p. 14] At the time of this writing there is no complete English
translation of the Nine Chapters, although there are many scholarly Chinese editions,
and translations into Japanese, German, and Russian. An English translation by J. N.
Crossley and Shen Kangsheng is in preparation, to be published by Springer-Verlag.
For summaries, see [11], [17], [18], [21].

The format of the Nine Chapters is terse: a problem, its answer, and a recipe for
obtaining the answer. Usually no justification is given for the method of solution. Just
the facts.

Chapter One has many problems on the arithmetic of fractions, and a section on
computing areas of planar figures, with correct formulas for rectangles, triangles, and
trapezoids. Here’s a problem on the area of a circle:

1.32: There is a circular field, circumference 181 bu and diameter 603 bu. Find the
area of the field.
Answer: 11 mu 9045 bu. (1 mu = 240 bu)

Method: Mutually multiply half of the circumference and half of the diameter to
obtain the area in bu. Or multiply the diameter by itself, then by 3 and divide
by 4. Or multiply the circumference by itself and divide by 12. [11, p. 13]
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The first method is correct, but the data of the problem and the other two methods
assume that the ratio of the circumference of a circle to its diameter, which we call 7,
is three. This assumption is made throughout the Nine Chapters.

Chapter Two is a series of commodity exchange problems involving proportions.
Chapter Three concerns problems of “fair division.” The solutions given may not
seem very fair to us:

3.8: There are five persons: Dai Fu, Bu Geng, Zan Niao, Shang Zao, and Gong Shi.
They pay a total of 100 gian. A command desired that the highest rank pays the
least, and the successive ones gradually more. Find the amount each has to pay

Answer: Dai Fu pays 813, qmn Bu Geng pays 1013, qum Zan Niao pays 14+
gian; Shang Zao pays 21132 gian; Gong Shi pays 43132 qian. [11, p. 21]

The method calls for dividing the cost in proportions :7:%:3:1, which gives

practice in adding fractions, but badly exploits the lowest rank person!
Chapter Four contains problems asking for the calculation of square roots and cube
roots. The last problem of Chapter Four is

4.24: There is a sphere of volume 16441866437500 chi. Find the diameter.

Answer: 14300 chi.

Method: Put down the volume in chi, multiply by 16 and divide by 9. Extract
the cube root of the result to get the diameter of the sphere. [11, p. 23]

This gives the formula V = $5d® for the volume of a sphere in terms of its diameter,
which isn’t correct even if we take 7= 3.

Chapter Five asks for the volumes of a number of solids, including several different
kinds of pyramids, frustums of pyramids, cones and their frustums, and a wedge with a
trapezoidal base. The given formulas are all correct, but no hint is given of how they
were derived.

Chapter Six deals with fair division in a much more realistic way than the problems
in Chapter Three. There are problems on transporting grain, taxation, and irrigation.
There are also some less realistic problems which make one wonder how Chinese
students must have felt about “word problems”:

6.14: There is a rabbit which walks 100 bu before it is chased by a dog. When the dog
has gone 250 bu, it stops and is 30 bu behind the rabbit. If the dog did not
stop, find how many more bu it would have to go before it reaches the rabbit.

Answer: 107+ bu. [11, p. 28]

Chapter Seven has a number of problems involving two linear equations in two
unknowns, usually solved by the method of “false position.” Problems in Chapter
Eight involve solving n linear equations in n unknowns for n up to 5. The method of
solution, described in detail, is Gaussian elimination on the appropriate matrix
represented on the counting board. The Chinese called this method fangcheng. See
[17] for an extended example. Perhaps the most interesting problem is

8.13: There are five families which share a well. 2 of A’s ropes are short of the well’s
depth by 1 of B’s ropes. 3 of B’s ropes are short of the depth by 1 of C’s ropes. 4
of C’s ropes are short by 1 of D’s ropes. 5 of D’s ropes are short by 1 of E’s
ropes. 6 of E’s ropes are short by 1 of A’s ropes. Find the depth of the well and
the length of each rope.

Answer: The well is 721 cun deep. A’s rope is 265 cun long. B’s rope is 191 cun
long. C’s rope is 148 cun long. D’s rope is 129 cun Iong. E’s rope is 76 cun
long. [11, p. 37]
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Notice that this problem involves five equations and six unknowns, and thus is
indeterminate. Liu Hui pointed out that the solution gives only the necessary
proportions for the lengths. It is also the smallest solution in integer lengths.

The problems in Chapter Nine involve right triangles and the “Pythagorean”
theorem, which had long been independently known in China, where it was called the
gou-gu theorem [26]. No proof is given of this theorem, or of a correct formula for
the diameter of the inscribed circle in a right triangle. Similar right triangles are used
to solve surveying problems involving one unknown distance or length.

Liu Hui’s Commentary

The Nine Chapters presents its solution methods without justification. Liu Hui in his
commentary set himself the goal of justifying those methods. One reason was
practical, as Liu wrote about the Nine Chapters’ use of 3 for the ratio of the
circumference of a circle to its diameter:

Those who transmit this method of calculation to the next generation
never bother to examine it thoroughly but merely repeat what they learned
from their predecessors, thus passing on the error. Without a clear
explanation and definite justification it is very difficult to separate truth
from fallacy. [20, p. 349]

Another reason has to do with seeing and appreciating the logical structure of
mathematics:

Things are related to each other through logical reasons so that like
branches of a tree, diversified as they are, they nevertheless come out of a
single trunk. If we elucidate by prose and illustrate by pictures, then we
may be able to attain conciseness as well as comprehensiveness, clarity as
well as rigor. [20, p. 355]

In this section, we’ll begin our examination of Liu’s attempt to attain “clarity as well as
rigor” by looking at five of his contributions.

Problems in Chapter Four of the Nine Chapters require taking square roots using
the square root algorithm. To take the square root of a 2k + 1 or 2k + 2 digit number
N, the algorithm begins by finding the largest number A, = a, X 10, where q, is a
digit, such that A% <N. Then compute N, =N —A?}. Now find the largest A, =
a, X 10571 such that A;(2A,+ A;) <N,, and form N,=N, —A,(2A, + A,). Con-
tinue in this manner. If N is a perfect square, its square root will be the (k + 1)-digit
number S =aya, - a;.

Liu Hui first gives a geometric argument, similar to arguments used in Greek
geometric algebra, to explain why the algorithm works. Consider Ficure 2, which is
not to scale. (Liu’s original figures were all lost, but most of them are easy to
reconstruct from his verbal descriptions.) From a square of area N, we first subtract a
square of side A, then the L-shaped figure of width A,, which the Greeks called a
gnomon, then a gnomon of width A,, and so on until we exhaust the square.

Well, at least we exhaust the square if N is a perfect square, as it is in many of the
Nine Chapters problems. (Some of the problems involve rational perfect squares, for
instance N = 5647525 in problem 4.15.) But Liu also asks what happens if N is not a
perfect square: “In this case it is not sufficient to say what the square root is about by
simply ignoring the [remaining] gnomon.” [7, p. 211] For integral but non-square N,
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N

A, A Ay
FIGURE 2
Geometry of the square root algorithm.

the square root algorithm yields N =S 2+ R, where 0 <R <2S+ 1. Liu gives two
ways of approximating the square root. The first is to take a rational approximation
using

R
25+1

<\/ﬁ<s+%. [17]

S+

The second is even more interesting. If we continue the algorithm on the counting
board past the last digit of N, we get

~ At )
\/;~aoa1...ak+—10 + 100 +o

The ancient Chinese had names for the fractions 1/ 10* for k up to five. Liu suggests
continuing the calculation down to “those small numbers for which the units do not
have a name,” and if necessary adding a fraction to @, 5 to get even greater accuracy
[11]. In other words, it is not stretching very much to say that Liu Hui invented
decimals; he certainly invented their calculational equivalent. We will see that he
needed this kind of accuracy for his calculation of 7. Liu also gave a justification for
the cube root algorithm using a three-dimensional figure similar to Ficure 2.

Chapter Eight of the Nine Chapters solved systems of linear equations using the
fangcheng method on a counting board matrix: multiples of rows (actually columns,
since the equations were set up vertically on the counting board) were systematically
subtracted from other rows to reduce the matrix to triangular form. Liu Hui explains
that the goal of this method is to reduce to a minimum the number of computations
needed to find the solution: “generally, the more economic a method is, the better it
is.” In fact, Liu compares two different fangcheng methods for solving problem 8.18
by counting the number of counting board operations needed in each method [17].
Surely this is the first example in history of an operation count to compare the
computational efficiency of two algorithms.
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Finally, Chapter Nine of the Nine Chapters presented, without justification,
solutions to a number of problems involving right triangles. Liu Hui justified these
solutions by a series of ingenious “dissection” arguments, based on the principles that
congruent figures have the same area, and that if we dissect a figure into a finite
number of pieces, its area is the sum of the areas of the pieces. I'll give two examples.

The solution to problem 9.16 finds the diameter d of a circle inscribed in a right
triangle with legs ¢ and b and hypotenuse ¢ by

2ab

d= a+b+c

Liu’s dissection proof of this result can be reconstructed as in Ficure 3 [20]. See it?
For the second example, consider the famous gou-gu theorem that for a right

triangle as above, a®+b?=c? For this theorem, Lius verbal description of his
proof is as follows:

The shorter leg multiplied by itself is the red square, and the longer leg
multiplied by itself is the blue square. Let them be moved about so as to
patch each other, each according to its type. Because the differences are
completed, there is no instability. They form together the area of the
square on the hypotenuse. [31, p. 71]

A

d
FIGURE 3
Diameter of a circle inscribed in a right triangle.

Clearly, Liu had a dissection proof of the gou-gu theorem. Just as clearly, the
verbal description does not enable us to reconstruct Liu’s diagram. Ficure 4 shows two
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c c
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red blue
b c ¢ a4
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b c
T a
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red
(@) (b
FIGURE 4

Dissection proofs of the gou-gu theorem.

proposed constructions. The first, where the square on the hypotenuse is allowed to
overlap the squares on the legs, is due to Gu Guanguang in 1892, reported in [17].
The second, less straightforward but without overlapping squares, is from [31].

The Sea Island Mathematical Manual

Chapter Nine of the Nine Chapters included surveying problems involving one
unknown distance or length. However, most real surveying problems involve several
such unknowns. For example, we might wish to determine the height of, and distance
to, a mountain which is inaccessible, perhaps because it is on an island we cannot
reach. Liu Hui pointed out that we can do this by making two observations, and
worked out the geometry of how to make two observations yield the unknown
distances. If we wish also to know the height of a pine tree on top of that inaccessible
mountain, we can do it with three observations. His compilation of solutions to nine
illustrative surveying problems became the Sea Island Mathematical Manual. The
mountain on the sea island is the first problem; the pine tree is the second. [1] and
[24] include complete translations with commentary.
Here is the sea island problem:

For looking at a sea island, erect two poles of the same height, 30 chi, the
distance between the front and rear pole being 6000 chi. Assume that the
rear pole is aligned with the front pole. Move away 738 chi from the front
pole and observe the peak of the island from ground level; it is seen that
the tip of the front pole coincides with the peak. Move backward 762 chi
from the rear pole and observe the peak from ground level again; the tip
of the rear pole also coincides with the peak. What is the height of the
island and how far is it from the front pole?

Answer: The height of the island is 7530 chi. It is 184500 chi from the
front pole. [24, p. 20]

The extant version of the Sea Island Manual contains only the problems, answers,
and recipes for obtaining the answers, exactly as in the Nine Chapters. Liu Hui also
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gave proofs for the correctness of his methods, but these proofs and the accompanying
diagrams were not preserved, and the best we can do is offer plausible reconstruc-
tions. Using the notation of Ficure 5, Liu’s method for solution corresponds to the
formulas

bd asd
h=x+b= +b, y=——.
a, — ay a, — a,
A
X
C D
B v pi
b b b
y E a F G a; H
FIGURE 5

The height of a sea island.

We must obtain these formulas using only similar right triangles, since there was no
concept of angle, much less any trigonometry, in ancient Chinese mathematics, nor
was there any use of similar triangles other than right triangles. Here is one method.
Since A ABD ~ ADGH,

ﬁ=a£’ so xa; = by + bd. (1)
1
Since A ABC ~ ACEF,

%=%, so xay, = by. (2)

Subtracting these equations gives x(a; — a,) = bd, which leads to the expression for
the height, and then substitution gives the distance.

Swetz [24] gives a very plausible alternate derivation which avoids the use of similar
triangles completely. It is based on a lemma about rectangles which is illustrated in
Ficure 6a: if we divide a rectangle into four smaller rectangles at any point on its

y ]
I d 1
(a) A rectangular lemma. (b) A rectangular proof.

FIGURE 6

a;
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diagonal, then the two rectangles shaded in the figure must have the same area. This
follows from a dissection argument. The diagonal divides the rectangle into two
congruent triangles. From these triangles, subtracting the congruent triangles labeled
A and B yields the given rectangles. If we apply this result twice to Ficure 6b, the
equal \\\ rectangles give equation (1), and the equal /// rectangles give equation
(2). This method is also discussed in [9].

The Sea Island Manual was certainly not the deepest mathematics which Liu Hui
did, but it probably had the greatest immediate impact. Recall that the kingdom of
Wei was continually at war during the time of Liu’s work. Surveying was important for
maps which supported war, as well as the administrative bureaucracy. Needham
reports that the Wei general Deng Ai always “estimated the heights and distances,
measuring by finger breadths before drawing a plan of the place and fixing the
position of his camp.” [24, p. 15] There is an interesting parallel in the West. Swetz
notes that Greek armies had a specific reason for wanting to calculate unknown height
at an inaccessible distance, quoting Heron of Alexandria:

How many times in the attack of a stronghold have we arrived at the foot
of the ramparts and found that we made our ladders and other necessary
implements for the assault too short, and have consequently been defeated
simply for not knowing how to use the Dioptera for measuring the heights
of walls; such heights have to be measured out of the range of enemy
missiles. [24, p. 28]

The Calculation of o

Recall that problem 1.32 of the Nine Chapters gave the correct formula for the area
of a circle, but used a value of three for 7. Liu points out that for a circle of radius
one, the area of a regular dodecagon inscribed in the circle is three, so the area of the
circle must be greater than three. He then proceeds to estimate the area of the circle
more exactly by calculating the areas of inscribed 3-2"-gons as follows. In a circle of
radius 7, let ¢, be the length of the side of an inscribed n-gon, a, be the length of the
perpendicular from the center of the circle to the side of the n-gon, and S, be the
area of the n-gon. See Ficure 7. Then we can calculate inductively

Ce=T,
a,=vr*— (0”/2)2 ,
0o, =V (/2> + (r—a,)’,
So, = %nrc“.

The last formula is clever, and follows from noticing that each of the 2n triangles
making up the 2n-gon can be thought of as having base r and height ¢, /2. Moreover,
Ficure 7 shows that the area S of the circle satisfies

S2n <§< Sn + 2( 8271 - Sn) = 282" =S

n:

Liu considers what happens when we take n larger and larger: “the finer one cuts,
the smaller the leftover; cut after cut until no more cut is possible; then it coincides
with the circle and there is no leftover.” [20, p. 347] As n gets large, S,, approaches
the area of the circle and nc, approaches the circumference, so we have justified the
Nine Chapters claim that the area of a circle is one-half the product of its radius and
circumference.
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c,/2

FIGURE 7
The calculation of 7.

Taking r = 10, Liu Hui carries out the calculations, keeping 6-place accuracy, up to
n = 96, hence approximating the circle by a 192-gon. He concludes that

3.1410 < 7 < 3.1427,

and suggests that for practical calculations it should be enough to use 7 = 3.14. Either
Liu or some interpolating later commentator carried the computation as far as
n = 1536 and obtained the approximation 7= 3.1416. See [13] and [28] for treat-
ments of the intricacies of this kind of calculation. [13] gives a translation of Liu Hui’s
text.

If we compare this treatment to Archimedes’ in Measurement of a Circle, the
similarities are striking, although the differences are also interesting. Archimedes, of
course, included a formal proof by the method of exhaustion required by the
conventions of Greek geometry. However, the subdivision method and the inductive
calculation are essentially the same. Archimedes obtained his upper bound by
considering circumscribed polygons, instead of Liu’s clever method of using only
inscribed polygons. Archimedes used 96-gons to obtain his famous estimate

10

3:7T 3.1409 < 7 < 3.1428.

<m< 3% , or

Two centuries later Zu Chongzhi (429-500 A.D.) carried Liu Hui’s approach
farther. Using a polygon of 24576 sides, Zu obtained the bounds 3.1415926 < 7 <
3.1415927. See [13] and, for a different view, [28]. In addition, Zu recommended two
rational approximations for 7: Archimedes’ value of 22/7, and the remarkably
accurate 355 /113 = 3.1415929.

Zu’s method for arriving at his rational approximation 22 for 7 is not known. One
line of reasoning would be to start with Zu’s value of 3.1415926 and the approximation
2 =31 = 3.1428571, which is slightly too large, and ask for a fraction which, when
added to 3, would give a better approximation than % does. It is easy to see that the

fractions we should check are those of the form # We then try to find k so that
k

Tk + 1

_ 1
49k + 7

~ 1428571 — .1415926 = .0012645,

N

~ .0012645, 49k + 7 = 791.
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The solution k = 16 gives the rational approximation 315 = 5. For another possible

approach, see [17].

Zu Chongzhi’s approximation of 7 was not bettered until al-Kashi of Samarkand
computed 7 to 14 decimal places in the early 15th century. The rational approxima-
tion 355/113 was not discovered in Europe until the late 16th century.

The Volume of Pyramids

Chapter Five of the Nine Chapters gives correct formulas for the volumes of a
number of pyramidal solids. For example, the volume of the chu-tung, a truncated
rectangular pyramid illustrated in Ficure 11, is correctly given as

%(2019 +ad +be + 2¢d).

Did you know that formula? From it follows the volume of a rectangular pyramid (put
c¢=d =0), a truncated square pyramid (put @« =b, ¢ = d), and a rectangular wedge
(put d =0).

Liu Hui gives justifications for these formulas based on dissection arguments and a
remarkable limit argument. I will mostly follow the translation and discussion in [30].
Liw's argument uses three special solids: a giandu, which is a triangular prism, a
yangma, which is a rectangular pyramid whose vertex is above one corner of its base,
and a bienao, which is a tetrahedron with three successive perpendicular edges. See
Ficures 8, 9, and 10.

Liu starts with the case of a cube, which he dissects into three congruent yangma,
to conclude that the volume of a regular yangma is 1,/3 the volume of the cube. See
Ficure 8. Since a yangma and a bienao fit together to make a giandu, which is 1/2 of
the cube, the volume of the bienao must be 1/6 the volume of the cube. Alterna-
tively, we could get this result by dissecting the yangma into two congruent bienao.

FIGURE 8
Dissecting a cube and a giandu.

Now suppose that instead of a cube, we start with an @ X b X ¢ rectangular box. We
can still dissect it into three yangma, but now these yangma will have 3 different
shapes, so it is not clear that their volumes are equal. We can also dissect a yangma
into two bienao, or assemble a bienao and a yangma to make a giandu, but again,
the bienao have 3 different shapes, and it is not clear that their volumes are equal.


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 71, NO. 3, JUNE 1998 175

C
ﬂ .
b
bl /

i c Ny 7

Y, Y, Y,

C
b
b
B,

a ) 7

FIGURE 9
Three types of yangma and bienao.

Using the notation in Ficure 9, what the dissections do show is that
Y, +Y,+Y,=abc
Y, + B, =abc/2 Y, =B, +B,
Y, +B,=abc/2 Y,=B,+B,
Y, +B,=abc/2 Y,=B,+B,.

However, this does not give enough information to evaluate the volumes.

Liu proceeds to prove that Y, =2B; (and similarly Y, =2B,, Y, =2B,), which
does allow us to conclude that the volume of each yangma is abc /3 and that of each
bienao is abc /6. His method is shown in Ficure 10. Dissect Y, at the midpoints of its
sides into a rectangular box, 2 giandu, and two half-size copies of Y, (call them Y}).
Similarly, dissect B, into 2 giandu and 2 half-size copies of B, (call them Bj). Since
the box and 2 giandu have twice the volume of 2 giandu, we only need to show that

............................

FIGURE 10
Dissecting a yangma and a bienao.
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Y, =2B;. Liu notes that these new figures together have 1/4 the volume of the
original figures, since the two small yangma and bienao fit together to form two
qiandu whose total volume is abc/8. Repeat the dissection on each of the new
figures, and continue. At each stage the volume we have not yet accounted for is 1,/4
that of the previous stage. Liu expresses what happens in the limit as follows:

The smaller they are halved, the finer are the remaining dimensions. The
extreme of fineness is called minute. That which is minute is without form.
When it is explained in this way, why concern oneself with the remainder?
[30, p. 173]

This is not a modern limit argument, of course. Liu seems to be saying that if we cut
the figures into smaller and smaller pieces, we will come to a point where the pieces
are so small that they no longer have form or volume. (The terms translated as
‘minute’ and ‘form’ are philosophical terms from the Tao Te Ching.) Still, we
recognize the limit idea, and the recursive dissection argument has a delightful
elegance. For some of the philosophical issues, see [7], [16], and [30]. For a
comparison to the Greek proof in Euclid’s Elements, see [4].

Knowing the volume of a yangma, we can now derive the volumes of the other
solids by dissection. For example, let’s verify the formula for the volume of the
chu-tung. Dissect it as in Ficure 11 into a box L, four giandu of two different shapes
Q, and Q,, and four yangma Y. If we do this to six copies of the chu-tung, we have

6L+ 120, + 120, + 24Y.

2 X

FIGURE 11
The volume of a chu-tung.
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Now reassemble these, as in Ficure 12, into

two boxes of volume hed: 2L
one box of volume had: L +4Q,
one box of volume hbc: L +40Q,
two boxes of volume hab: 2L+ 8Q, +80Q, + 24Y.

Notice that for the last step we need to replace some of the Y, yangma with yangma
of other shapes, but this is allowable since we have shown that these yangma all have
the same volume.

Finally, Liu derives the volume of a cone from the volume of a square pyramid, and
the volume of a truncated cone from the volume of a truncated square pyramid, by
using what we know as “Cavalieri’s principle,” after Bonaventura Cavalieri
(1598-1647). We can state this principle as follows:

The volumes of two solids of the same height are equal if their planar
cross-sections at equal heights always have equal areas; if the areas of the
planar cross-sections at equal heights always have the same ratio, then the
volumes of the solids also have this ratio.

Liu inscribes the truncated cone, for example, in a truncated square pyramid of the
same height, and then says that since each cross-section consists of a circle inscribed
in a square, the ratio of the volumes of the truncated cone to the truncated pyramid
must be in the same ratio as the area of a circle to its circumscribed square, i.e., 7/4

[7].

The Volume of a Sphere

Recall that problem 4.24 of the Nine Chapters gave the volume of a sphere as $d°.
Liu points out that this is incorrect, even using the inaccurate value of 3 for 7. He
explains the error as follows. Let a cylinder be inscribed in a cube of side d, and
consider the cross-section of this figure by any plane perpendicular to the axis of the
cylinder. The plane will cut the cylinder in a circle of diameter d, inscribed in a
square of side d. The ratio of these areas is /4. Since this is true for each
cross-section, the same ratio must hold for the volumes, so that the volume of the
cylinder is %ds. Now consider the sphere of diameter d inscribed in the cylinder. If

we assume, incorrectly, that the ratio of the volume of the sphere to the volume of the

cylinder is also 7/4, then we get that the volume of the sphere is %T—gda, which is the
Nine Chapters result (using 7= 3).

How do we know that the ratio of the volumes of the sphere and cylinder cannot be
/4P Liu’s ingenious argument is as follows. Inscribe a second cylinder in the cube,
with axis orthogonal to that of the first cylinder, and consider the intersection of these
two cylinders. Liu called this intersection a “double box-lid.” See Ficure 12. Since the
sphere is contained in both cylinders, it is contained in the box-lid. Moreover,
consider any cross-section of this figure by a plane perpendicular to the axis of the
box-lid. The cross-section of the sphere will be a circle, inscribed in the square which
is the cross-section of the box-lid, so again the ratio of the areas is /4, and since this
is true for all cross-sections, the ratio of the volumes of the sphere and the box-lid
must also be /4. Now the box-lid is certainly smaller than the original cylinder, so
the ratio of the volumes of the sphere and the cylinder must be strictly less than /4.
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FIGURE 12
Cross sections of a sphere in a double box-lid in a cube.

This lovely argument using Cavalieri’s principle shows that the Nine Chapters
formula is wrong, but in order to use it to find the correct volume of the sphere, we
would need to be able to find the volume of the double box-lid. Liu tried to do this,
but could not. He recorded his failure in a poem, translated by D. B. Wagner as
“The Geometer’s Frustration:”

Look inside the cube

And outside the box-lid;

Though the diminution increases,
It doesn’t quite fit.

The marriage preparations are complete;
But square and circle wrangle,

Thick and thin make treacherous plots,
They are incompatible.

I wish to give my humble reflections,

But fear that I will miss the correct principle;

I dare to let the doubtful points stand,

Waiting for one who can expound them. [29, p. 72]

The wait turned out to be two centuries, and the person Liu waited for was Zu
Gengzhi, the son of Zu Chongzhi. Stories associated with Zu Gengzhi are reminiscent
of those told about Archimedes and many mathematicians since then. For instance,
“he studied so hard when he was still very young that he did not even notice when it
thundered; when he was thinking about problems while walking he bumped into
people.” [15, p. 82]

Zu Gengzhi argues as follows. Consider one eighth of the double box-lid inscribed
in the cube of side r = d /2. See Ficure 13. If a plane is passed through this figure at
height h, it intersects the cube in a square of side r, and the box-lid in a square of

side s. By the gou-gu theorem, r*> — s* = h®. Hence the area of the gnomon outside
the box-lid is h*.
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Now Zu Gengzhi considers another solid of height + whose cross-section at height
h is h*: an inverted yangma cut from a cube of side r. See Ficure 13. The part of the
cube outside the box-lid, and this yangma, have all their corresponding cross-sections
of the same area. Zu then states his version of Cavalieri’s principle in verse:

If volumes are constructed of piled up blocks [areas],
And corresponding areas are equal,
Then the volumes cannot be unequal. [29, p. 75]

FIGURE 13
The volume outside a box-lid is Cavalieri-equivalent to a yangma.

Since the volume of the yangma is 57°, and the volume outside the box-lid must be
the same, the volume inside the box-lid must be %r® Putting the eight pieces
together, we get that the volume of the complete double box-lid must be two-thirds of
the cube containing it, 3d°. Remembering Liu Hui’s result that the sphere takes up
7/4 of the double box-lid, we finally get the correct formula for the volume of a
sphere of diameter d:

_ T2 5 _ T 4
V= 73 d’ = 6 d°.
Following Liu, Zu ends his discussion with a poem, “The Geometer’s Triumph:”

The proportions are extremely precise,
And my heart shines.

Chang Heng copied the ancient,
Smiling on posterity;

Liu Hui followed the ancient,

Having no time to revise it.

Now what is so difficult about it?

One need only think. [29, pp. 76-77]

One could argue that Liu Hui did not use the full power of Cavalieri’s principle,
since he only applied it to the situation of one figure inside another, where the
cross-sections were circles inscribed in squares. But certainly Zu Gengzhi gave a clear

statement of the principle and used its power more than a millennium before
Cavalieri [14].
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There was another precursor, of course. Archimedes had calculated the volume of a
sphere, and in Proposition 15 of The Method, he calculated the volume of the
perpendicular intersection of two cylinders of the same radius. The argument for
Proposition 15 is in the part of The Method which has not survived, but it is not
difficult to reconstruct the reasoning from other demonstrations earlier in the book.
Archimedes thought of volumes as made up of planar slices and balanced them on a
lever against the slices of other volumes. It is an extension of Cavalieri’s principle. For
a general discussion of the use of versions of Cavalieri’s principle in Greek geometry,
see [10].

Conclusion

After the theoretical phase of Chinese mathematics in the 3rd through 5th centuries,
represented by Liu Hui, Zu Chongzhi, and Zu Gengzhi, proofs and justifications
began to be less important. Although the work of Liu Hui was still taught in the
official School for the Sons of the State, instruction began to emphasize rote learning
of methods rather than justifications. Liu’s diagrams from the commentary on the
Nine Chapters and arguments from the Sea Island Manual, and Zu Chongzhi’s work,
were lost. The next, brief flowering of creative mathematics in China did not happen
until the 13th century, with mathematicians like Qin Jiushao, Li Zhi, Zhu Shijie, and
Yang Hui. After the thirteenth century, Chinese mathematics declined again until the
period of contact with the West.

It is interesting to speculate why Chinese mathematics, with such a powerful
calculational base and such a strong theoretical start, did not develop a coherent,
ongoing mathematical tradition. Martzloff [17] and Swetz [25] review a number of
possible reasons: emphasis on practical applications, rote learning, and reverence for
established ideas which stifled creativity, uneven state support, and low social status
accorded to mathematicians compared to scholars in the humanities.

Nevertheless, the remarkable achievements of Chinese mathematics in its first
golden age are worthy of our interest and admiration.

Acknowledgment. I wish to thank the mathematics department of the University of Colorado at Boulder
for their hospitality during the writing of this paper, and Victor Katz, Ranjan Roy, and Frank Swetz for
suggestions which have improved its quality.

Note. [8] and [21-27] contain very accessible introductions to Chinese mathematics. [15] and [17] are
comprehensive modern histories of Chinese mathematics which make extensive use of Chinese research.
[18] and [19] are older histories which are still good reading.
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1. Introduction

The old problem of trisecting angles by means of ruler and compass, unsolvable in its
original form, has generated, throughout the history of mathematics, many interesting
contributions, including special “tools” to be used either for solving the problem
exactly or for finding ingenious approximations (see, e.g., [5]). Contrary to popular
belief, several Greek geometers considered tools other than straightedge and compass
for this purpose. Among these tools were the spiral of Archimedes (ca. 225 BC), the
quadratrix of Hippias (ca. 425 BC), and the conchoid of Nicomedes (ca. 240 BC). All
these curves, originally given as geometrical loci, can be considered, using today’s
language, as examples of solutions of elementary functional equations, with metric
equalities defining the curves as loci.

Our aim in this paper is to review these curves from a functional equations point of
view and to see to what extent the trisecting property, which they all have, character-
izes them. In doing so, we find families of trisecting curves that we have not
encountered elsewhere.

This note also has a pedagogical purpose. The interest and beauty of working on
geometrical problems by means of functional methods strengthens the link between
calculus and geometry.

2. The Archimedean Spiral

Archimedes (ca. 225 BC) introduced his celebrated spiral for the purposes of squaring
the circle and multisecting angles. We can describe the Archimedean spiral easily
using polar coordinates:

r=a-0, (1)
with @ a constant of proportionality (see Ficure 1).

Given a circle of center O and radius a, the distance from a point P of the spiral to
the center equals the length of the arc AB on the circumference corresponding to the
central angle 6. So Archimedes was able to multisect any angle AOB by dividing
(with euclidean tools) the segment OP into n equal parts OP,, P, P,,...,P,_, P,
where P, =P, tracing the circles with O as center and OP,, OP,,...,OP,_; as radii
and cutting the circles with the spiral at the points T,T,,...,T,_,. Then
OT,,OT,,...,OT,_, divide the initial angle 2 AOB into n equal parts (in Ficure 1,
n=3).

Note that the point Q of the spiral » =a6 obtained when 6= 7/2 is such that
OQ=a-m/2, so the rectangle of base 2a and height OQ has area 7 a?; from this, the
squaring of the circle of radius a is obtained.
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FIGURE 1
An Archimedean spiral trisecting an angle.

Note also that the sum of two Archimedean spirals r=a6 and r=Db6 is another
Archimedean spiral: a6 + b6 = (a + b)6. This has an interesting geometrical meaning;
the problem of squaring the circle of radius a + b could be solved either by producing
the spiral r=(a+b)8 or by using the spirals r=a6 and r=>b6. The following
definition is motivated by the preceding properties of the spiral. (In what follows, R,
denotes the set of nonnegative real numbers.)

DEFINITION. For fixed n>2, an n-spiral function is a function F: R%Z->R,
satisfying the following conditions for all a, b, 6 > 0:

(i) F(a+b,0)=F(a,0)+F(b,0); (i) F(a,g)=%F(a,0).

The following theorem characterizes n-spiral functions.

THEOREM 1. Given n =2, a function F: R%2— R, is an n-spiral function if and
only if F can be written in the form

F(a,0)=ae(6), (2)
where ¢(0) =0 and ¢ is a solution of the functional equation

of3)= 25t dorren. (=)

Note. The general solution of (E,) can be obtained by defining ¢(x) arbitrarily on
the interval [1, n), and extending to R, by repeated use of (E,) itself (see [8]).

Proof. If F is an n-spiral function then, by condition (i), for fixed 6 the function
f(a) = F(a, 6) satisfies the classical Cauchy equation f(a + b) =f(a) + f(b). Since f
is bounded from below by 0 on its domain, it follows that f(a) = f(1)a (for a proof of
this implication, see [1]). If we let 6 vary again we will obtain that F(a, 8) = F(1, 6)-a,
i.e., equation (2) holds with ¢(8) = F(1, 6). By (ii), ¢ must satisfy ¢(0) = 0 and (E,).
The converse is obvious. O
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COROLLARY 2. Let F be an n-spiral function, represented in the form (2). Then, for
any fixed a > 0, the plane curve given in polar coordinates by r = F(a, ) solves the
n-multisection of any angle.

~ COROLLARY 3. Suppose that F is an n-spiral function both for n =3 and for n =5,
and that F is continuous or monotonic. Then F is the Archimedean spiral F(a, ) = a#.

Proof. Theorem 1 and the facts that
0 1 0 1
<P(§) =3¢(0) and @(g) =z¢(0)
imply that ¢(3"5"0) = 3" -5"¢(6) for all n, m € Z. Since the set {3" 5" [n,m € Z} is

dense in R, (see, e.g., [11] for a proof of this fact), the corollary follows from the
continuity or monotonicity of F. O

Thus we see that a large variety of spirals can be used to trisect any angle (this is
Theorem 1 with n=23). But as soon as one wants to do both trisecting and
“quintisecting” (or “multisecting”) then the classical Archimedean spiral is the right
tool in the world of n-spiral functions. The following corollary generalizes these
observations.

COROLLARY 4. Let a and b be two positive integers such that loga/logh is
irrational. If F is a continuous or monotonic n-spiral function for both n=a and
n =Db, then F is the Archimedean spiral.

Proof. The irrationality of log a/logb implies that the set {a"b"|n,m € Z} is
dense in R, and the same argument as above applies. O

3. The Quadratrix of Hippias

Given a circle with center (0,0) and radius R, Hippias wanted to find a function f for
which (see Ficure 2)
J{EZ% = %, where tan a = @ and tan B= f(—lf)— (3)

The reason for introducing such a curve (function) was geometric: using (3) it is
possible to produce any rational proportion of angles by taking the same rational
proportion of lengths along the vertical OR (the latter task could be performed using
euclidean tools). We show below that such functions exist.

To be precise, we look for a continuous strictly decreasing function f: [0, K] — [0, R]
such that f(K) =0, f(0) =R and, for all ¢, b in [0, K), equation (3) holds, that is,

f(a) _ arctan(f(a)/a) “
F(b) = arctan (£(b)/b)
(We use the principal value of the arctangent, i.e., — /2 <arctan(x) < 7/2.)
The continuity of f at 0 (from the right) implies that lim,, o+ f(a) =R. As a

consequence, a -
lim arctan( f(a_) ) =35

a—0*
since f(a)/a tends to + and the principal value of arctan ¢ tends to 7/2 as ¢ tends
to +o. This agrees nicely with the meaning of « in equation (3), and in Ficure 2. So,
if in equation (4) a tends to 0, we obtain

f(b)= %aretan(%). (5)
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R

Y

FIGURE 2
The quadratrix of Hippias.

It will be easier to determine the inverse function f~': [0, R] = [0, K] of f. If an f
satisfying the above conditions exists, then its inverse function f_l exists, is continu-
ous and strictly decreasing, and satisfies f~'(0) = K, f~'(R) =0, and (from (5) with

y =f(b)),
y= %arctan (%)
1y
This determines f* explicitly on (0, R]:
_ T
) =y00t(-2%),
which implies that f~'(R) = 0. By definition, f'(0) =K. If ! is continuous at 0,
then ‘o | . | Ty
K=f"1(0)= I = i t( o2
) = lim £ (y) = lim g corf TF )
S (ry/(RR)) 7
(The last equality holds because lim, _, ot /sin(¢t) = 1.) So we see that f~! is continu-

ous at 0 (and hence f is continuous at K), only if K=2R/.
Conversely, {~!: [0, R] = [0, K], defined by

_ 2R lim cos( gg) __my/@R) __ 2R

y—0"*

ycot(g—g) ify €(0, R]
7 y) = 9R (6)
=i if y =
T
is continuous, at 0 as we have just seen and on (0, R] because the cotangent function

is continuous on (0, 7/2]. Moreover, we have f~1(0)=2R/7=K, f '(R) =0, and,

as substitution shows, + arctan (1/f 1 (x))

y  arctan (y/f ' (y))
for all x, y € (0, R]. But this equation is clearly equivalent to (4). The only thing we
still have to prove is that f~', and thus f, is strictly decreasing. Since f' is
differentiable on (0, R], we calculate

Tl

(Y =t (3]) - o ey
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FIGURE 3

n-secting an angle with the quadratrix of Hippias.

this is negative on (0, R] because
71'1{), (771) 1 (7711) Y
COS(QR sin SR 2sm R <_2R'

So we have constructed the required f~', and thus also f.

This function can solve the quadratura circuli. However, we will use the quadratrix
of Hippias not for squaring the circle but for trisecting the angle, a problem that had
already been studied by Dinostratus, who lived nearly a century before Hippias.

The function f multlsects any angle (see Ficure 3): Given an angle A in the interval

(O, 2) consider x, in [O ] such that tan A =f(x,)/x,. If we divide the segment
joining (x4, 0) with (x, f(x,)) into n equal pieces, then the horizontal line y = f(x4) (“)
mtelsects y=f(x) at a point (x), f(x})) with f(x')=f(x,)/n and the Tine
y= x f01ms an angle of A/n radians with the x-axis, according to (3). Thus we
see that to n-sect angles, we need only the particular case B = a/n of equation (3),

that is, f(b) =f(a)/n or b =f'(f(a)/n). This motivates the following definition:

DEFINITION. Given n > 1, an n-quadratrix is a bijective function f: [0, K] — [0, R]
such that f(0) = R, f(K) =0, and

;alctan(f( x) ) = arctan (%) (7)

Note that equation (7) is the particular case a=x, b=f'(f(x)/n) of (4).
Following is a necessary and sufficient condition on n-quadratrix functions.

THEOREM 5. A bijective function f: [0, K] — [0, R] is an n-quadratrix function if
and only if there exists a function ¢ that satisfies equation (E,), ¢(R) = /2, and
. yeote(y) ify+0,
) = { e
Yy
Proof. With f(x) =y € [0, R), equation (7) becomes

yartn| 7=
— arctan

H(y)
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In other words, the function ¢(y) = arctan(y/f '(y)) must satisfy the functional
equation (E,): ¢(y/n) = ¢(y)/n. Thus f'(y) =y cot(¢(y)) for y €[0, R), while
f(K) = 0 means that f~'(0) = K. ]

Note that, when ¢(y)= 7y/2R, we obtain the quadratrix of Hippias and, as in
Corollary 3, if a function, continuous or monotonic on [0, K], is at the same time both
a 3- and a 5-quadratrix (or a 2- and a 3-quadratrix, as mentioned in Corollary 4), then
the function is the quadratrix of Hippias. Thus a situation similar to that of the
Archimedean spiral applies to the classical quadratrix.

4. The Conchoid of Nicomedes

Given a positive constant M > 0, the point O =(0,0) and the horizontal line y =a
with @ > 0, the conchoid of Nicomedes is defined as the set of points P = (x, y) in the
plane such that y > @ and the distance from P to the intersection of the lines OP and
y=ais M (see Ficure 4). Since the point of intersection has coordinates (ax/y, a),
we must have

ax \?
(x——y—) +(y—a)’=M?

this yields the cartesian equation (y — a@)*(x* +y*) = M 2y>.
f

/

v

0 ax/y x

FIGURE 4
A generic point in a conchoid of Nicomedes.

Nicomedes discovered that, given an angle A, say in (O, g), one can consider the

associated conchoid to A with a =1, M =2K, and K=1/cos A (see Ficure 5) and
use this to trisect the given angle A: The angle A is located in the first quadrant,
opening out from the y-axis, K is determined, then the conchoid is drawn and the
line BC determines the point C such that OC forms an angle of A /3 with the y-axis.

It is easy to see why this works. Since OB = K and BP = DC = 2K, we have BC=DC
cos @ = 2K cos a. Applying the law of sines to the triangle OBC we obtain OB /sin «
= BC /sin B. Thus

sin B = BCsin a/OB = 2K cos a sin a/K = 2sin @ cos a =sin (2a),
whence B =2« and therefore a=A/3.

One observes in this case that, for each angle, the trisection is obtained using the
conchoid associated to that angle. Can we find a single function f—maybe after
replacing the constant 1 or @ by another function g—so that, by a similar construc-
tion, we can trisect any angle? To answer this question we introduce the following
definition.
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0
FIGURE 5
The conchoid of Nicomedes.

DEFINITION. Two continuous functions f, g: (0, +©) = (0, +%) form a trisecting
couple if f(x) /x is a bijection from (0, +) onto (V3 , +%), g(x)/x is a bijection from
(0, +) onto itself, and, for every A in 0, 3.), there exists a unique point x , > 0 such

/ (i")x makes an angle of A/3 (in radians) with the y-axis, and the

that the line y =
line y = g—(\“*—)x makes an angle A with the y-axis. (See Ficure 6.)
‘A

The assumption that f(x)/x maps (0, +%) onto (V/3, + ) is natural because, for
all A in the interval (0, 7r/2), we want to have a point x, such that

f(x;:) =cot‘(%) >cot(%) =V3.

Similarly, g(x)/x should attain all values in (0, %), as does cot A.
We proceed to characterize trisecting couples. If (f, g) is such a couple, then
consider the (well defined) function ¢: (0, 7) — (0, +%), defined by y(A) =x,. By

definition, one has the relations

g(¥(4)) _ f(w(A) (A
W—cotA and b (A) —cot(g). (8)
f
/y=\/§x
/

—1/

v

FIGURE 6
A general trisecting couple of functions.


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 71, NO. 3, JUNE 1998 189

From (8) and the bijectivity and continuity of g(x)/x from (0, + ) onto (0, + ), it
is immediate that  must also be bijective and continuous. Thus ¢! exists and (8)

yields “1( g
g(x)=xcot(¢ '(x)) and f(x)—xcot( ()) (9)

It is easy to check that if ¢y~ ' is an arbitrary continuous bijection from (0, + %) onto
(0, 7m/2), then the functions f and g given by (9) constitute a trisecting couple. We
have proved the following theorem.

THEOREM 6. A pair of ﬁmctwns (f, g) is a trisecting couple if and onl y if there
exists a continuous bijection ' from (0, +) onto (0, w/2) such that (9) holds.

y=v3x

FIGURE 7
An example of a trisecting couple.

For example, when g =1 we get f(x) =x cot (“52); see Ficure 7.

Thus there are interesting collections of trisecting couples. Other (non-Greek)
trisecting curves, such as the trisectrix of Catalan or Tchirnhausen’s cubic, Ceva’s
cycloid, and others, may be found in the literature (see, e.g., [5,9, 10, 12]).
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This note had its genesis in the early 1980s, when the third author was teaching at a
community college in California and was asked a version of the following question by
a student:

Given a standard analog (two-hand) clock, are there times when the two
hands could be interchanged to obtain another valid time (besides the
obvious times when the two hands are at the same position)?

It was not hard to work out an answer to the question (see below), but the problem
suggests many similar, and harder, questions. The question sat for years until the first
author suggested it to one of his undergraduate students, the second author.

The most obvious of these questions regards a three-hand clock: Given a standard
three-hand clock (with hour, minute, and second hands), are there times when the
hands could be permuted in some way to obtain another valid time? Again, overlap-
ping hands provide trivial solutions. We examine this question in the second section;
in the last section we consider imperfect clocks.

The two-hand problem also appears in [1, 2,3, 4], with [3] giving the solution we
give, [2,4] giving algebraic solutions, and [1] giving hints towards the solution below.

The two-hand clock Let us examine first the case of a two-hand, perfectly
accurate, twelve-hour clock. As an example, take the time 2:00, when the hour hand
points at 2 o’clock and the minute hand points at the 12 o’clock position. Permuting
the hands, we do not get a valid clock position, since the hour hand pointing directly
at 12 forces the minute hand to also point to 12. We notice that the position of the
hour hand determines the position of the minute hand, so we can write the minute
hand position as a function of the hour hand position. If we use the 60-minute scale
on the clock face (so we measure the position of each hand as a real number in the
interval [0,60)—this is the usual scale for the minute hand, but not for the hour
hand), and use h to represent the hour hand and m(h) the minute hand, we have:

m(h) =12h — 60| h /5] = 12h (mod 60),
where | x| means the greatest integer less than or equal to x. We will often indicate
190
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hand positions as ordered pairs (x, y), where x is the position of the hour hand and y
the minute hand.

To answer the original question, we must find values of A for which (m(h), h) is a
+ valid clock position, i.e., for which h =m(m(h)). The last equation can be solved
algebraically; this was done in [4], which includes an exhaustive list of all solutions.
However, there is a nice way to “see” the answer (which appears in [3]): The point
(a,b) in the plane represents one of the hand positions we are looking for if and
only if (@, b) and (b, a) are both on the graph of the function m(h), which has [0, 60)
for its domain and whose graph is shown in Ficure 1.

m m
60 60
50 5
40+ 4
30+ 3
204 2
10 1
0 T T T T T T 1 T T T T h 0 T T T T 1 T T L T T T h
10 20 30 40 50 60 10 20 30 40 50 60
FIGURE 1 FIGURE 2
The graph of m(h). m(h) and its reflection about the line m = h.

The point (b, a) is on this graph if and only if (a,b) is on the graph (m(h), h),
which is the reflection about the line m = h of the graph above. Overlaying the two
graphs, we have the graph shown in Ficure 2, and the intersections are precisely the
points we are looking for. There are 143 of them (the apparent intersection at (60, 60)
is the same as the one at (0, 0)); as mentioned above, they are catalogued in [4]. The
11 intersections that lie on the line m = h are the trivial solutions where the hands are
at the same position, so there are 132 non-trivial solutions.

Before discussing the three-hand clock, we mention one property of the greatest
integer function that we use frequently: If r is a real number and @ an integer, then
lr+al=I|r]+a.

Three-hand clocks Next we consider a perfectly accurate three-hand clock. Our
method of graphical intersections may not be so useful in the three-hand case. In this
case, the lines representing the time are in three dimensions, and non-parallel lines
may not intersect.

As with the minute hand, the position h of the hour hand determines the position
of the second hand on our clock, via the function

s(h) =720h — 60|12k | = 720h (mod 60).
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With the additional hand on the clock come additional possible permutations of the
hands. We represent hand positions as ordered triples (x, y, z), with z the position of
the second hand. There are six possible permutations of the hands:

1) (h, m(h), s(h)) 2) (m(h), h, s(h)) 3) (h, s(h), m(h))
@) (s(h), m(h), h) 5) (s(h), h, m(h)) 6) (m(h), sCh), h)

The first is the normal position of the hands and always represents a valid time. The
only obvious value for & that gives a valid time for any of the other permutations is the
trivial one h = 0, or 12:00:00. Are there others?

Two-hand switches. The second permutation is just the hour hand—minute hand
switch discussed above (i.e., h = m(m(h))), with the additional requirement that the
two hands have the second hand in the same position: s(h) = s(m(h)). We examine
the tables in [4] and see that there are no such solutions other than those 11 times
when h =m(h); that is, the hour and minute hands overlap.

The third permutation leaves the hour hand alone, and since its position determines
the other two, the only solutions here are when s(h) = m(h); i.e., once again, when
the hands overlap. These are not particularly interesting cases. It is not hard to find
them algebraically; we simply note that the second hand crosses the minute hand
almost once a minute (59 times every hour, to be precise), so there are 12-59 = 708
such overlaps per rotation of the hour hand.

The fourth permutation (and the last two-hand switch to consider) is harder, though
one might notice that mathematically this is the same as the second permutation, with
the roles of s(h) and m(h) reversed. We must simultaneously solve h = s(s(h)) and
m(h) = m(s(h)). Here, however, there are 7202 — 1 = 518399 solutions to the first
equation; compiling a table and looking in it for solutions to the second didn’t sound
like much fun. Note that the second hand crosses the hour hand 12-60 — 1 =719
times in one revolution of the hour hand, so there are at least that many solutions.

We solve m(h) = m(s(h)) first. For convenience, let & =h /5 (a ranges from 0 to
12). We have, from routine calculations,

m(h) =m(s(h)) e 12h — 60| h /5] = 12(720h — 60| 124])
— 60| (720h — 60| 121 ) /5]
& |144h — | h/5]] = T19% /5
= [720a— | a|] = T19a.

Clearly, 719a: must be an integer for this last equation to be true; conversely, if 719«
is an integer, then |720a—|all=1719a+ a]~|a|=T19a+]a]—-]a]="T19a.
Thus the last equation holds if and only if 719« is an integer.

So we need « in [0, 12) such that 719« is an integer. As 719 is prime, & must be of
the form n /719 for some integer n satisfying 0 <n < 12-719 = 8628. Now we check
which of these 8628 solutions to m(h) = m(s(h)) also satisfies h = s(s(h)). Let a = =5
(0 <n <8627) be such a solution. With some manipulation, the requirement h =
s(s(h)) reduces to 60[12-720h] = (720 — 1)h. Substituting 5a for h in this equation
gives
5n | T2ln
719 12

The right side of this last equation is an integer only if 12|n. There are 719 multiples
of 12 in the interval [0,8628); as we already know, there are at least this many
solutions; this is all of them. Once again, there are no non-trivial solutions.

5n
60 12'720m

=(7202—1)%=» [12-720
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This hand-switch can also be approached using Mathematica to do some of the
arithmetic, but Mathematica doesn’t save as much work on this permutation as it does
on the cyclic permutation below.

Three-hand cyclic permutations. The two permutations we haven’t considered yet
are those that move all three hands. It will turn out that we need to solve only one of
these; the other will be a consequence. Consider the fifth permutation above. If
(h, m(h), s(h)) represents a valid time, then the requirements for (s(h), h, m(h)) to
also represent a valid time are h = m(s(h)) and m(h) = s(s(h)).

We were getting tired of doing mod 60 algebra by hand at this point, so we asked
Mathematica for help. Mathematica was not a big fan of non-prime moduli for
modular arithmetic either, but we finally settled on the Reduce command, handling
the modulus ourselves. This command simplifies equations, attempting to solve for the
variable(s) we specify (h in the example below); the equations generated by Reduce
are equivalent to the original equations and contain all possible solutions. If we define
m(h) = 12h and s(h) = 720h, then the command

In[l] :=Reduce[m[s[h]]-60k == h && m[h] == s[s[h]]-60 j, h]
Out[l]= 8639 j=518388 k && h=(60 k) /8639

does the trick: Keeping in mind that j and k must be integers, and checking (again
with Mathematica) that 518388 and 8639 are relatively prime, we find that 518388|;
and 8639|k. Since 8639|k, the equation h = 60k /8639 reduces modulo 60 to h = 0.
In other words, the only solution is the trivial one, where all three hands overlap at
12:00:00.

Why don’t we have to consider the remaining permutation? Let’s say we had a
solution for the sixth permutation (m(h), s(h),h); that is, some value h, such that
s(hy) = m(m(hy)) and h,=s(m(h,)). We claim that then h, is a solution for the
permutation we considered above! We must show that h, = m(s(h,)) and m(h,) =
s(s(hy)). The first calculation is as follows:

hy=s(m(hy))=720(m(h,)) =720-12h, =m(s(hy)) (mod60).

Since h, and m(s(h,)) are both non-negative and strictly less than 60, we conclude
that h, =m(s(hy)). (In fact, we just showed that s(m(h)) = m(s(h)) for any h!) Now
we have

s(s(hg)) =s(m(m(hg))) =m(m(s(hy))) =m(hg);

this takes care of the last permutation.

We have shown that for a perfect three-hand clock, there are no times when hands
can be interchanged to obtain valid clock positions, except for the obvious ones when
the hands overlap. In other words, if you've a sharp eye, you can always tell what time
it is on such a clock, even if the hands are installed in some permuted order.

Is your clock perfect? Ours aren’t. How strict must manufacturing tolerances be to
ensure that there are no nontrivial permutations of the hands that give valid times?
Let’s investigate.

We'll assume that the spindles that turn the hands are geared together accurately,
so we're not worried about the relative speeds of the hands. Our concern is with the
proper alignment of the hands. Notice that there are 11 times in a 12-hour period at
which the minute hand and hour hand will overlap. If we take one of these and turn
the clock face so that the minute and hour hands are pointing at 0 (i.e., 12 o’clock), we
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see that any strange mounting of the hands can be considered as a mis-mounting of
the second hand only, with the minute and hour hands mounted perfectly.

With these assumptions, we have the following function for the second hand in
terms of the hour hand:

§(h) =720h + 0 —60|12h + 0/60] = 720h + 0 (mod60),

where o stands for “offset.” The function that describes the position of the minute
hand is still m(h) =12h —60|h/5]. We want to find the minimal value of o that
gives a non-trivial solution for one of the five non-trivial permutations in the last
section.

It is immediate from the work done for the perfect clock that permutations 2 and 3
give no non-trivial solutions for any values of 0. Permutation 4 is again more work, but
the same argument as for the perfect clock again does the trick, with o added to the
appropriate places in the calculations (that is, with § replacing s).

Finally, we have to consider the two permutations that move all three hands. We
claim again that we need only consider one of them. Assume A, is a value such that
(m(hy), 8Chy), hg) is a valid time, that is,

hy=38(m(hy)) and $(hy) =m(m(hy)).

It is not true now that (8(hy), hy, m(hy)) is a valid time, but we claim that
(8(12h¢), 12hy,m(12h,)) is valid, so 12h, gives the desired solution for the other
permutation (with 12h; reduced modulo 60, if necessary). We must show that
12h, = m(8(12h)) and m(12h,) = §(5(12h,)). Here are the calculations:

12hy = 128(m( hy)) = m(m(m(m(hy)))) =m(8(12h,)) (mod60);
m(12hy) =m(m(hy)) =8(hy) =8(8(m(hy))) =$(5(12h,)).

So we consider only the permutation (m(h), §(h), h). We want to find the smallest
|o| that will give a non-trivial hand-switch. We proceed with the help of Mathematica
as for the perfect clock (s and m are the same functions as before: s(h) = 720h,
m(h) = 12h).

In[l] = Reduce[s[m[h]] +0-60 m == h && m[m[h]] ==s[h] +0-60
J,{h, o}]
-60 (j-m) 60 (8639 j-576 m)
Out[l]l= == - - — - && O == — e M
8063 8063

Working with this output, we find that 8639 and 576 are relatively prime; therefore
there are integers m and j such that 8639j — 576m = 1. As this will give us the
smallest value for |o|, we find them (using the Euclidean algorithm or Mathematica)
and get m =8624, j=>575. Substituting these into h = (60(—j+m))/8063, we
obtain h = (60-8049) /8063, with the offset 0o = 60,/8063. This translates into a time
of approximately 11:58:44.9981, with hand positions

482940 473700 362820
8063 > 8063 °> 8063

The hands don’t overlap here, but we get another valid hand position by permuting
the hands:

473700 362820 482940
8063 > 8063 * 8063
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It is easy to check that this last position is indeed valid. We get a similar solution for
o= —60/8063.

So, unless you can be certain that your second hand is mounted no more than
60,8063 seconds (about 8 thousandths of a second) off of vertical (at noon), you'd
better be sure you know which hand is which!

Acknowledgment. We thank the referee for pointing out Steinhaus’s book [3] and for improving the
exposition.
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The Steady State Sabbatical Rate

ALLEN J. SCHWENK

Western Michigan University
Kalamazoo, Ml 49008

Introduction How many faculty at a research university are likely to be on
sabbatical at any given time? Well, we are each eligible for one every seven years, so
about one seventh, or 14%, right? Obviously not. Some of us do not survive until the
seventh year to become eligible, some do not choose to apply for leave, and, finally,
some applications are rejected. So it must be lower. What do you think it is? 10%?
7%? 3%? With all these effects going on, it seems that we cannot hope to predict the
answer. And yet the solution depends upon only two modest assumptions and
knowledge of elementary linear algebra. Thus, this problem can be used in various
undergraduate classes to illustrate the use of matrices and eigenvalues in the real
world. It may even hold some special appeal for faculty and administrators who’d like
to be able to predict these things. For example, at my university it was suggested that
a 3% cap be accepted on the sabbatical rate: in a single year, no more than 3% of the
faculty would be on sabbatical. This cap would assure that an unusually large number
of requests do not pile up in a single year, leaving the university sorely understaffed.
But would such a cap merely “balance out the waves” of irregular demand, or would it
intrinsically change the frequency of sabbaticals in the long term?

Background: Perron-Frobenius theory In addition to standard elementary linear
algebra, we shall need some conclusions from the Perron-Frobenius Theorem (see,
e.g., Berman and Plemmons [1, pp. 26-31] or Gantmacher [2]). For the sake of
completeness, we now prove the results we shall need. A square matrix A is called

Ay Ap .
o an with

irreducible if there is no permutation matrix P such that PAP'=
square blocks A;; and A,, on the diagonal. A matrix induces a directed graph
when we place an arc from i to j whenever the entry ¢, ; is nonzero. An irreducible
matrix always induces a digraph having a directed path from each vertex i to every

other vertex j. This is called strongly connected. In this case, the matrix (I +A)"~*
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will have strictly positive entries because the required path between each pair of
vertices can have length at most n — 1. We let v; denote the ith coordinate of v.

PERRON-FROBENIUS THEOREM. If A is irreducible and nonnegative, then A must
have an eigenvalue A, of maximum modulus, that is real and positive. Moreover, the
multiplicity of A, must be one, and A, has an eigenvector y whose coordinates are all
positive.

Proof. For each nonnegative vector x define r(x) to be the largest positive constant
for which r(x)x < Ax. If p is the maximum of r(x) over all nonnegative x, then for
some y, we have py <Ay. We wish to show that no coordinate j gives the strict
inequality. If one did, we’d have Ay — py >0, but Ay —py# 0. Letz=(I+A)" 'y
Then z is strictly positive, and we find that

Az—pz=A(I1+A)" y—p(I+A)" y=(I+A)" (Ay—py).

Since Ay —py >0 and (I +A)""! is strictly positive, we conclude that Az — pz is
also strictly positive. Thus, r(z) > p contradicting the definition of p. Therefore, we
must have Ay = py, so p is an eigenvalue with nonnegative eigenvector y. If any
coordinate of y is 0, irreducibility of A assures that there is a zero coordinate y; =0
and a nonzero coordinate y; > 0, with a corresponding nonzero entry a; ;> 0. But
now we notice that (Ay), > 0= py,. Since this contradicts Ay = py, we conclude
that y must be strictly positive.

If the multiplicity of p= A, exceeds one, select a second eigenvector z. Now for
&= 0, the vector w=y — ez is positive. Find the largest number & for which w is
nonnegative, then w is a nonnegative eigenvector with some zero coordinates. If w
also has a nonzero coordinate, we shall locate a zero coordinate w; = 0 and a nonzero
coordinate w; > 0 with a corresponding nonzero entry a; ;> 0, leadmg to the contra-
diction (Aw), > 0 = pw,. Therefore w must be 1dent1cally 0. That is, ez =1y, so the
multiplicity of p must be one.

Finally, let A, real or complex, be any other eigenvalue for A. Then Av=Av.
Define a new nonnegative vector w by letting w; = |v;|. Taking absolute values in
each coordinate of the eigenvector equation and using the triangle inequality gives

n n
Zai,jvj < Zai,jluj| = Zai>j10j.
j=1 j=1

n—1 n—1 n—1

|Alw, = 1A o,] =

This says that [Alw < Aw, so [A| < r(w) < p= A, as required.

The solution We can now return to the sabbatical problem. To start the analysis,
we partition the faculty into seven classes, X; through X,. For i <5, X, contains all
faculty in their ith year of service or in their ith year following their last sabbatical.
These people are not yet eligible for sabbatical. The class X, contains everyone who is
eligible to apply for sabbatical. We will assume that X contains everyone with six or
more years of service since his or her sabbatical. (Many universities also require
sabbatical candidates to be tenured; for simplicity, we assume that everyone with six
years service is eligible to apply. In practice, there are few exceptions to this
assumption, and if there are any exceptions, they can be removed from the model
entirely without affecting the solution.) Finally, class X; comprises all faculty cur-
rently on sabbatical.

We shall let x,(#) denote the fraction of the faculty in class X; in year ¢. Now the
fractions x,(¢) vary from year to year; we call the distribution a steady state if every «x,
remains constant from one year to the next. It is certainly not obvious that any steady
state exists. We shall soon show, however, that not only does a steady state exist, but it
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is unique and stable in the sense that for any starting distribution of faculty among the
seven classes, the proportions x,(t) approach the steady state over time.

- Thus, our goal is to find the seven limits lim, _, ., x,(t) = y,. We call these values y;
the “steady state” proportions of our faculty. In particular, y, is the “steady state
sabbatical rate” of the title. But how can we find these steady state rates? Are we even
justified to assume that these limits exist? After all, any human endeavor is filled with
variability. Might not the sequence x,(¢) vary from year to year without ever
approaching a limit? Maybe x,(¢) is another example of chaos.

In the real world the steady state is never attained. We cannot plan the lives of
hundreds of people to reproduce the assumptions of a mathematical model. So why
should we care about steady state values? Because they represent an unbiased, good
faith estimate of the average number of people that ought to appear in each class over
an extended period of time. The administration’s request for a “cap” reflects the
legitimate concern that a change in policy might artificially release pent-up demand
for sabbaticals that vastly exceeds the steady state figure. It is reasonable to try to
mute, or limit this transient effect. But if we accept a cap below the steady state
sabbatical rate y;, pent-up demand can only continue to grow more and more out of

balance.

A steady state We will show that the steady state limits do exist, if we may make
two assumptions. First, we assume that there is a steady retention rate, r: each year, a
certain fraction r of the faculty who taught in the previous year return. The
complementary figure 1 — r is the turnover rate. All right, I admit this is not perfectly
constant from year to year, but at my university it varies from about 89% to 95%. That
will be constant enough. We shall assume, in particular, that the turnover rate hits all
classes equally. This may seem counter-intuitive, but it is a reasonable simplifying
assumption. For purists who refuse to accept this choice of convenience, we shall
return to this issue later. Accepting a sabbatical often includes a promise to return for
one or two years of service following the leave, so one might expect the retention rate
for class X; to be 100%, but even here there will be terminations due to death,
debilitating illness, and broken promises.

Our second assumption is that a given fraction of X, say p, will be granted
sabbatical each year. This may seem hard to predict because of the variations of how
many choose to apply, and how many of these are subsequently granted. In fact, we
can view the proportion p actually to be the product of two other rates, p =a Xs,
where a is the application rate, the fraction of those eligible who choose to apply, and
s is the success rate, the fraction of applications granted in a typical year. While we
may never “know” these values precisely, we dont even need to know them
individually. It will suffice if we assume that their product p exists and is constant. If
we don’t know p exactly, we can still draw conclusions from reasonable estimates of
p. At Western Michigan University, I observe that p seems to lie between 0.2 and 0.4.
Such an estimate is adequate for our purposes.

Now it is easy to see that with r and p as above, the classes of our faculty satisfy a
system of eight equations:

vt + 1) =my(t)  xe(t+ 1) =ms(t) + (1 —p)reg(t)
vg(t+1) =my(t)  aq(t+ 1) =preg(t)
xy(t4+1)=my(t)  x(t+1)=1—r+m.(t)

xs(t+ 1) =my(t)  x(t) +ay(t) +ay(t) +ay(t) +xs5(t) +ag(t) +a,(¢) =1.
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The first four equations report retention from one year to the next. The fifth also adds
those not given a sabbatical who remain in Xg. The sixth reports how many go on
sabbatical, and the seventh counts new hires plus those returning from sabbatical. The
final equation adds everyone, to get 100%. It is interesting to note that, in the steady
state, when each «x,(¢ + 1) = x,(¢), the eighth equation is the sum of the first seven:

X tagtagtay tagtagta;=r(x FayFag g tag )11
=x, +x,+x;+x, s +txg+x, =1

If we define the column vector x(¢) = (x,(#), x,(¢), x3(t), x,(2), x5(£), x4(2), x,())
and the transition matrix

l1-r 1-=r 1=r 1—-r 1—=vr 1-—r 1
r 0 0 0 0 0 0
0 r 0 0 0 0 0
A= 0 0 r 0 0 0 of,
0 0 0 r 0 0 0
0 0 0 0 r r—rp 0
0 0 0 0 0 p 0

then the system is nicely presented as the matrix equation x(¢ + 1) = Ax(¢). The
system approaches a steady state if and only if A"x(¢) approaches a limiting vector.
Notice that A is irreducible, because the positive entries down the subdiagonal plus
the entry @, ; = 1 represent a directed seven-cycle among the seven classes. Since this
makes the underlying digraph strongly connected, the matrix is irreducible. Now the
Perron-Frobenius theorem assures the existence of a strictly positive eigenvector for
the largest eigenvalue.

It is not immediately evident what this dominant eigenvalue is, but we might notice
that the transpose A has j=(1,1,1,1,1,1,1)" as an eigenvector for the eigenvalue 1.
In other words, A’ is stochastic. Thus A, =1 for both A’ and A. To find an
eigenvector for A, =1 in A, let y=_(y,, y5, y3, Y4, Y5, Y. y7)° and assume that
Ay =y. If we set y, = a, we quickly find the eigenvector

o r6p ¢
—-r+rp’1—r+rp) '

2 .3 4
y=a(1,r,r AN

But y represents the fractions in each class, so we should have y-j = 1. This implies
that

_ (I=r)(1=r+rmp) “

a =,
l=r+m-—-rp
t
_ (I-r)(d—-r+mp) 1 r2 3 p ’"SP 7"679
y l—r+rmp—rp o Pl =r+rpl—rtrp )

In particular, the steady state sabbatical rate is y, =1 —r)rp /(1 —r +rp —r'p).

The Perron-Frobenius theorem has been very kind to us. Not only can we verify
that y is a steady state dominant eigenvector, but we know that, up to scaling, y is
unique. Thus, the y we have found is the only one whose components sum to 100%.
The characteristic polynomial of A can be found easily via Maple, or by hand via
expansion along the first row. Upon factoring, we get

det(xI —A) = (x— 1)(x® +rpx® + ripx* + rPpx® + ripx® + r¥px + rp)

= (x = 1)q(x).
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The degree 6 factor g(x) has six complex roots; we shall now show that each has
modulus smaller than . First, substitute x = rz and factor, to get

q(x) =r%(2°+pz® +pz* +pz® +pz® +pz +p).
Upon multiplying by (z — 1) we obtain
(= 1g(x) =r (7= (1=p)*=p).

Now any root must satisfy 2= -p)z®+ p. If we assume that |z|.> 1, the triangle
inequality implies that

lz|” = [(1-p)z+pl<(1 ——;o)lzl6 +p=<(1 —;o)l,zl6 +p|z|6 < |2/
This certainly requires |z| = 1, and to get equality above, we need z°=1=z". Thus
we have shown that the only root with [z > 1 is z = 1. It follows that every root of
g(x) has |z| <1, or |x| <r, as we had claimed.

No root is repeated because g(x) and ¢'(x) are relatively prime for every p in the
open interval 0 <p < 1. This can be checked using Maple, or by hand computation. It
is actually more convenient to work with the degree seven polynomial z” — (1 —p)z°®
—p. Applying the Euclidean algorithm to it and its derivative reduces to the real
number 7*p?[6°(1 — p)” + 77p]. Since this expression has no root on the open interval
0 <p <1, we may conclude that the ged reduces to 1, and so A has no repeated
eigenvalues. Now we let v, denote the six eigenvectors for these complex eigenvalues,
and we observe that any nonnegative starting vector can be written as a linear
combination

6
x(0) =coy + Y v
i=1

Now we see that

6
A"x(0) =x(n) =cyy+ Y, c,Alv,.
i=1
Since each [A]| <r”", it is clear that A"x(0) approaches c,y as n approaches %. Thus,
the steady state is unique, and any starting input converges to the steady state. Since
y-j =1, the constant ¢, equals 1.

In the real world What does all this mean in the real world? At Western Michigan
University the retention rate seems to vary from year to year from a low of 89% to a
high of 95%. If we assume that, on average, r = 0.92, then the steady state sabbatical
rate is
_0.048508p
Y77 0.08 +0.362 153p -

Suppose that about a third of eligible professors will apply for sabbatical and that 75%
of applications are granted. Then p = 0.75 X 0.33 = 0.25, and y, = 7.11%. If, instead,
we let p range from 0.2 to 0.4, then y, increases from 6.36% to 8.63%. So it is
reasonable to expect 6% to 9% of the faculty to be on sabbatical in any single year.
What about that proposed cap of 3%? Artificially imposing a cap—any cap—redefines
the transition matrix, creating a new steady state. For example, the 3% cap forces
y; = 0.03, which, in turn, requires the proportion p to be given by the formula

_ yr(1—r) _ 0.03(1—r)
P r(1—r) +yr(r*=1) (1 —r)+0.03r(r®—1)"
For r=92%, we find that p = 6.38%, a shockingly low proportion. Think about it. If
about 30% of those in class X regularly apply, then we must have a success rate of
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only 21% to achieve p. Thus, a typical faculty member would need to apply about five
times before a sabbatical is granted. That’s one sabbatical every eleven years. Perhaps
we should change the name to an undecematical. In contrast, a cap of 7% limits p to
24.18%, a figure large enough to permit an application rate of 33%, together with a
success rate of 73%. This seems more in line with the original spirit of the sabbatical
concept.

Another interesting observation is how large the class of those eligible (and waiting)
for sabbatical becomes. With a 3% cap and r=92%, we find that x4 approaches
51.15%. Over half the faculty is in line for sabbatical. With a 7% cap, the result is that
xg approaches 31.46%.

The fine print When we first introduced the model, we brushed aside the issue of
how reasonable it is to use the same retention rate for all classes. If you find the
constant uniform retention implausible, simply i’eplace the single rate r by a specific
rate for each class r,. The transition matrix becomes

l=r, 1=ry, 1l=vry 1—-v, 1l—ry 1—-15 1

r 0 0 0 0 0 0

0 Ty 0 0 0 0 0

A= 0 0 Ty 0 0 0 0
0 0 0 Ty 0 0 0

0 0 0 0 s rg—rgp O

0 0 0 0 0 re P 0

It may seem strange that the rate r, appears nowhere in the matrix, but this is
appropriate since everyone currently on sabbatical either returns to class X, or is
replaced by a new hire, also in class X,. In effect, 100% of class X; moves to class X,
the following year. It remains true that A'j=j. Now the eigenvector for A, =1
in A is

y= “(17 T, M7, 1T T3, M1Te 73Ty, 11”1_1”72”‘?{‘;1”5 ) ririr,g)rf,sr(jp )
6T TP s T Ts P
Since y-j =1, we find
_ l=rg+rgp
(L+ 7y +ryrg +ryrgry +ryrgryry ) (1 —rg +rgp) +rirgrsryrs(1+1p)

a

Thus, the steady state rate has become
_ Mo 3Ty s P
(L+r +ryrgtrirgry +ryrgrary) (1 —rg +rgp) +rirgrsryrs(1+rgp)

Y7

This is not much different from the previous answer. In fact, if we set all the retention
rates to a common value, the steady state sabbatical rate again reduces to

1—7)r®
l—r+mp—rp
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A Quadratic Residues Parlor Trick

DAVID M. BLOOM
Brooklyn College of CUNY
Brooklyn, NY 11210

Statements Choose a prime p > 3 such that p =3 (mod 4), but don’t tell me what p
is. Now do (or have your computer do) the following calculations: (1) determine which
numbers between 0 and p /2 are quadratic residues modulo p (i.e., are congruent to

squares, mod p); (2) find the sum of these “low” quadratic residues; (3) replace said
sum by its least non—negative residue r (mod p). Here are three examples:

P quadratic residues “low” q.r.’s sum of r
(mod p) (<p/2) low q.r.’s
7 1,2,4 1,2 3 3
11 1,3,4,5,9 1,3,4,5 13 2
19 1,4,5,6,7, 1,4,5,6,7,9 32 13
9,11,16,17

Now here’s the parlor trick: If you tell me what 7 is, I'll tell you what p was. (Fairly
quickly, without a computer.) Conversely, if you tell me p, I can quickly compute r
without using any information about quadratic residues.

Challenge. Find the pattern before reading the next paragraph. You might start by
computing and then plotting the points (p, r) for perhaps twenty more values of p. If
this reveals the pattern to you, you'll then be able to go from p to r; but can you go in
the opposite direction?

OK, we won’t keep you in suspense. The relevant theorem is the following:

THEOREM 1. Let P ={p >3: p is prime and p = 3(mod 4)}. For fixed p € P, let
r=R(p) be the least non-negative residue (mod p) of the sum of those quadratic
residues (mod p) that lie in the interval (0, p /2). Then:

(@) p is the largest prime factor of 16r+ 1. (In particular, r+#0.) Moreover,
p=16r+1)/mwhere m =3, 7, 11, or 15, and m is the smallest of these four
values such that (16r + 1) /m is prime.

(b) Conversely, if r* is a positive integer such that (16r* + 1) /m is prime for some
m €1{3,7,11,15}, then r* = R(p*) for some p* € P.

Notice that Theorem 1(a) implies that the function R:P — Z* is one-to-one—differ-
ent P-primes p yield different r’s. (This was the assertion of part (a) of [2].) Before
proving the theorem, let’s give some examples. Suppose you follow the instructions at
the beginning (choose p, etc.) and then tell me that r = 13. Since 16r + 1 =209 =
11-19, Theorem 1(a) then tells me that p = 19 (and m = 11), agreeing with the table
above. (Even for a number larger than 209, the fact that there are only four possible
m’s makes the factoring problem fairly manageable.) However, suppose you decide to
cheat: Without following instructions, you just pick a number at random and say, “r is
23.” “Oh, no it isn’t!”, I can answer, having quickly computed 16-23 + 1 = 369 =
32-41, whieh implies that 369 /m is not prime for any of the four possible m’s. (By a
similar argument, the range of R contains no integer of the form 9n + 5, which, in
particular, solves part (b) of [2]. Can you find other such forms?)

Going in the opposite direction, if p € P is given then Theorem 1(a) implies
pm =1 (mod 16), so that m is the multiplicative inverse of p (mod 16), and since
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0 <m < 16 this determines m completely:

m=14—p (mod 16); 0<m <16. (1)
Equivalently,

m=16[(p +2)/16] + 14 —p.

Since r=(pm —1)/16, it follows that we can express r explicitly in terms of p,
without any calculation of quadratic residues. (The points (p,r) lie on just four
straight lines, corresponding to the four values of p mod 16. Did you discover this
already, in response to the “Challenge” above?) For example, if p = 19, then (1) gives

m =11 and hence r=(19-11 — 1) /16 = 13, as we expect.
In proving Theorem 1, we will need the following related result:

THEOREM 2. Letp €P and let S, S, be, respectively, the sums of those quadratic
residues and. quadratic nonresidues (mod p) that lie in (0,p/2). Then S,=

S;J (mod p) and (Sp — S;J)/p =(p+ 1)/4 (mod 2).

Theorem 2 is known (we give an elementary proof below) and is of interest in its
own right. But I haven’t found Theorem 1 in print; references would be appreciated.

Proofs. First, some notation. As above, we let
P={p>3: pisprime and p =3 (mod 4)}.

For any finite set A of numbers, #A and s(A) will denote, respectively, the number
of elements in A and the sum of those elements. Also, for p €P, let L, =
{1.2,....(p = 1D/2} and H,= {(p+1/2,...,p—1} (the “low” and “high” inte-
gers, respectively, between 0 and p). The abbreviations “q.r.” and “q.n.r.” will stand
for “quadratic residue” and “quadratic nonresidue,” and Q,, Q) will denote,
respectively, the subsets of {1,2,..., p — 1} consisting of the qr’s and qn.r’s
(mod p).

LemMA 1. If p €P, then, foralln, n€Q,<p—-—n€<Q),.

Proof. In the field Z , of integers modulo p, it is well known (see, e.g., [1, Theorem
2.41]) that the group Z% of nonzero elements is cyclic of order p — 1, say with
generator [ g], brackets denoting residue class mod p. (In number-theorists’ language,

is a “primitive root” mod p.) Moreover, the only power of [g] having order 2 is
[g]P~D72) so we must have [—1]=[g]?"V/2 an odd power of [g]. It follows that
in Z;’j,

[n]isasquare &> [n] = [g]"" e [-n]=[-1][n] = [g]""
<> [p—n]=[-n] isanonsquare,
and the Lemma follows.

LemMA 2. If p € P, then s(Q,) =s(Q},) =0 (mod p).

Proof. As above, the squares in Z% are [g2) [g*]....[gP~']=11] Thus, Q, has
n=(p —1)/2 elements, and these elements are precisely the roots of the polynomial
congruence x"—1=0 (mod p). Hence their sum equals minus the coefficient of
x""!in x" — 1, namely 0 (remember that p >3 so that n > 1); that i, S(QP) =0
(mod p). But then also S(Q’p) =0 (mod p), since

S(Qp)+S(Q;7)=1+2+ o+ (p—1)=p(p—1)/2=0mod p.

Proof of Theorem 2. We have S,=s(Q,NL,)=3,(r) and S, =s(Q,NL,)=
Ej(sj) where the r’s and s’s are the “low” q.r.’s and q.n.r.’s respectively. By Lemma
1, the remaining q.r.’s (the elements of QP N Hp) are the numbers p — S and the


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 71, NO. 3, JUNE 1998 203

elements of Q), N H, are the numbers p — r;. Thus, letting
t=8,—8, =31 —3s;,
we have
s(Q,NL,)—s(Q,NL,) =
s(Q,NH,) =s(Q,NH,) =X (p=s) = X(p—n)
j i

=p(#(Q,NL,)—#(Q,NL,))+t

Adding these two equations gives

s(Q,) —s(Q,) =p(#(Q, NL,) — #(Q,NL,)) +2¢. (2)

By Lemma 2, the left side of (2) is congruent to zero (mod p); therefore ¢ = 0 (mod
p), so S, =S, (mod p), and we can write t = S, =S, =kp, k € Z. This proves the
first assertlon of Theorem 2. As for the second (concelmng the parity of k), we have
s(L,)=1+2+ - +(p—1)/2= 1 pzl

and hence

p—1 p+l

5 7 tt=s(L,)+t

= (S(Qp n L})) +S(Q;) N LP)) + (S(Qp N Lp) - S(le N LP))
=25(Q,NL,)=28,. (3)

Equation (3) reduces (mod 2) to (p +1)/4 4+t =0 mod 2, so that ¢, and hence also
k =t/p, has the same parity as (p + 1) /4.

Proof of Theorem 1. Let p € P. The number r = R(p) is the least positive residue
(mod p) of S, =s(Q,NL,), so S, =r (mod p). Thus, if we multiply equation (3) by
8 and then reduce mod p (and remember that p divides t), we obtain

—1=16S,=16r (mod p)

so that p is a divisor of 16+ + 1, say 167 + 1 = pm. Since r < p, we have m < 16, and
since p =3 (mod 4) we must also have m = 3 (mod 4), so that m € {3,7,11, 15}. Also,
if any prime ¢ > p is a divisor of 16+ + 1, then g divides m, so that (since p > 7) the
only possibility is ( p, g) = (7,11). But for p = 7 we had r = 3 (see table at beginning),
and then 167 + 1 =49 is not divisible by ¢ = 11. Hence no such g > p exists, i.e., p
is the largest prime factor of 16+ + 1 (which in turn implies the statement, “m is the
smallest ... ”), proving Theorem 1(a). As for part (b), let r* € Z* and suppose (16+*
+1)/m is a prime p* for some m €{3,7,11, 15}, and assume that m is the least such
number that makes this true. Then m =3 (mod 4) implies p* =3 (mod 4); and if
p* =3, then p*m =1 (mod 16) implies m = 11 (a prime > p*), contradicting “m is
the least ... .” Hence p* €P, so Theorem 1(a) gives p* =(16r+ 1)/h where
r=R(p*) and h<{3,7,11,15}. Since p*m=1=p*h (mod 16), it follows that
m = h, hence r* =r =R(p*).

REFERENCES

1. I. Niven, H. Zuckerman, and H. Montgomery, An Introduction to the Theory of Numbers, fifth edition,
Wiley, New York, NY, 1991.

2. D. M. Bloom, Problem 10432, Amer. Math. Monthly 102 (1995), 169. (A solution to this problem, due
to Thomas Honold, appeared in Vol. 104 (1997), 673.)
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Bounding Power Series Remainders

MARK BRIDGER
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Boston, MA 02115

Most calculus books use the “Lagrange form of the remainder” to bound the
truncation error for Taylor series. However, exclusive dependence on this formula has
several disadvantages.

1. Tt works only when one is constructing the Taylor series of a known function,
using values of its derivative.

2. It may be very hard or impossible to compute and estimate the derivatives
required.

3. The Lagrange remainder is often a poor estimate and is sometimes unusable.

We'll have more to say about these problems, but it is only fair to ask what we
propose to use in place of the Lagrange remainder. The answer is surprisingly simple:
estimate the tail end of the series by comparison with a geometric series. We'll give
some examples shortly.

One problem with Lagrange bounds is that they are useful in only one of the cases
where power series arise: expanding a known function with known derivatives. This is
nice for convincing students that, in principle, their calculators don’t actually need
massive tables inside them, but can actually calculate logs and trig functions. Of
course, calculators don’t actually use Taylor series, but that’s another story: in
principle they might.

Power series, however, also arise as solutions to differential equations. Until
recently this use had been downplayed by many numerical analysts, but new computer
algorithms devised by Harley Flanders [3] may change that. Arguably, this use of
power series is more valuable than the expansion of known functions via Taylor series;
however, bounding of the truncation error of such a power series via a Lagrange-type
remainder is generally not feasible since the derivatives of these power series are
themselves power series.

Geometric series, on the other hand, are relatively simple and straightforward
mathematical objects; many students have seen them in high school. Geometric series
are perhaps the only series whose convergence properties students really understand;
everything is known: exactly when they converge, and what they converge to. They are
a solid piece of real-estate in a sea of uncertainty and confusion. Students also seem
relatively comfortable with the ratio test, probably because it is easy to remember and
use. This should present a good opportunity for discussion of convergence in general
by comparison with the geometric case. However, it is unfortunate that those books
which do make this comparison rarely continue it into the area of truncation analysis.

It's time for some examples. First let’s consider the matter of approximating e’.
The error after truncating at the Nth term is, according to Lagrange,

M

_(_m!_(.5)N+l,

where M is a bound on e* for 0 <x <.5. An easy estimate is M =2, which, for
N = 6 yields an error of less than 0.0000031.
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Now let’s look at what’s been truncated:

7 8 9 10
Remainder = 75| + 85‘ % + %‘— + e

i 5, 8 50
ST TR -7! 737!
57 5°
= —7— + 77? + cee
= —5— f fi 1, 5
= sum o ageometnc series; first term 1, ratio K
57

(1 1) < 0.00000171.

Not only do we get a better (smaller) bound, but we don’t have to worry about how to
approximate powers of e as we did with the Lagrange remainder.

Admittedly, both methods here are pretty simple; if anything, the algebra for the
Lagrange form is easier. But you don’t have to go far to see the algebraic limitations of
Lagrange: just try finding and bounding the 7th derivative of arctan x or sin(x)/e".

A more spectacular illustration of the shortcomings of the Lagrange remainder
occurs in expanding —In(I—x)asa Taylor series around 0. It is easily seen that the
n' derivative of this function is —(n — 1)! /(1 —x)", so

N \‘K
—In(1—-x)= Y ?+RN(x),
K=1
where
N‘ xN+1 x N+1 1
RN(A)_(1—5)N“'(N+1)!_(1—§) N

with 0 < é <x.
+1
When x = 0.75, the series converges to In4, with remainder f 755) 1{1’ where
0 < ¢<0.75. If we want to know how many terms to take to get a desired accuracy,
we have to estimate this remainder—but how? If £>0.25 the remainder goes to
infinity; otherwise it goes to 0. The Lagrange remainder gives us no useful informa-
tion.

On the other hand, without using the Lagrange remainder, we get, quite simply:

N+1 xN+2
Ry(x) = 351+ Nga
XN+1

ST +ata®+)

xN+1 1
B N—l—l(l—x)'

When x =0.75 this gives us a usable estimate of the error caused by truncating
after N terms.

Now let’s look at the differential equations side of the story. The hyperbolic Bessel
Sunction I(r) is a solution to the equation

ry"(r) +y'(r) —ry =0.
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Fairly easy algebra shows that

M

]‘(k’)

This series converges for all r, but what is the truncation error if we chop it off after
,.21\‘

I(r) f

degree 2N ? The remainder is Xy _y ., a0 and
term N+2 rAN+) AN (N + H® _ _1_( r )2
term N+ 1 4N+2((N+2)!)2 FANED T 4\N+2)-

Since these ratios get smaller with N, the remainder is less than the sum of the
geometric series whose first term is “term N + 17 and which has this last expression
as its common ratio. Thus:

r%N+D 1

DN T ()

truncation error <

If there is any other easy way to find such an estimate for the error here, we are not
familiar with it; once again the Lagrange remainder won’t help.

This kind of error estimation can be introduced very early in the study of series. In
fact, when we first compare series in studying convergence, we can point out that
whenever a series is dominated by a geometric one, then its remainder is dominated
by the corresponding remainder of the geometric series. But every convergent power
series is, in fact, dominated by a geometric one. (This fact guarantees that we have a
radius of convergence) To see why, suppose that the power series Ly_ga;x*
converges for some x =s with |s|> 0. Since the terms must be bounded, we have,
when i > N say, |a;s'| <K for some K. It follows that |a,| < K/|s|', so we have

oo
Y gt ¥ |axf|<k E }“‘

k=N+1 k= N+1 k=N+1

which converges for |x] <Isl. In our examples, we chose a dominating geometric
series that provides a useful bound.

A final question may be posed: How do you prove that various Taylor series
converge to the functions they represent without using the remainder term? The
solution is simple: invoke the uniqueness theorem for the solutions of differential
equations. All elementary functions encountered in calculus satisfy simple differential
equations. In fact, it is instructive for students to find such equations for the
exponential and trigonometric functions. The Taylor series for these functions can also
be shown to satisfy the equations (doing so is a good exercise in manipulation of
series).

The intuitive content of the uniqueness theorem for solutions to ordinary differen-
tial equations—at least those of orders 1 and 2—is so strong and so important, that it
would be a pity if we didn’t present it to our students. If there was ever a topic central
to “calculus reform,” it is this one. Even without a formal analytical proof, its physical
and geometric interpretations make acceptance easy and compelling. Furthermore, it
is philosophically tied to our perceptions of physical or Newtonian determinism; we
invoke it implicitly nearly every time we solve a mechanics problem with calculus.
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In summary, we propose de-emphasizing the Lagrange form of the remainder in
the curriculum of the usual two-year calculus sequence, and emphasizing instead the
use of geometric series bounds on truncation errors, and the introduction of the
uniqueness theorem for solutions of differential equations.

We conclude with two notes:

* The ideas in this paper have been tested in the Project CALC program,at Duke
University for several years now, and have proved quite successful. A discussion
can be found in the Project CALC text [4].

* Comparison with geometric series can be used to correct truncation errors by
adding on compensating sums. The most famous version of this “acceleration of
convergence” technique is called Aitken’s A% [1], [2].
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Proof Without Words: Eisenstein’s Duplication Formula

2 csc(20) = tan 0 + cot 0
(G. Eisenstein, Mathematische Werke, Chelsea, New York, NY, 1975, page 411.)
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The Fundamental Theorem of Calculus
for Gauge Integrals
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This note presents a Fundamental Theorem of Calculus for gauge integrals that is
very general but still accessible to undergraduate students. We first define the gauge
integral and give some of its properties. We then introduce an extended notion of
differentiation, that of the parametric derivative. Finally, we combine these concepts
to state and prove the most general Fundamental Theorem of which we are aware.

The gauge integral The gauge integral (also known as the generalized Riemann,
or Kurzweil-Henstock integral) is defined using Riemann sums, and is a direct
generalization of the Riemann integral ([4], [5], [6]). The gauge integral turns out to
be more general than the Lebesgue integral as well. The generalization involves a
device called a gauge which allows the intuitively appealing choice of smaller intervals
where the function being integrated is steep, and larger intervals where the function is
flat.

As we do for the ordinary Riemann integral, we define a partition of the interval
[a,b] to be a set of points xg, x}, x,,..., %, with a=xy<x,; < -+ <x,=b. We
choose a number z, called a tag, in each interval [x,_;, x;]; the result is a tagged
partition of the interval [a, b]. Then Xj_, f(z;)X(x; —x;_,) is a Riemann sum for f on
the interval [a, b].

We define a gauge y by choosing for each point p in [a, b] an interval y(p)
containing p. A tagged partition is called y-fine if for every k, 1 <k <n, [x;_,, x;]is
a subset of the interval y(z;). An alternative description of gauge can be given by
defining any positive function 8, with domain [a, b], to be a gauge; the equivalence of
this to our definition is obtained by letting y(x) = (x — 8(x), x + 8(x)), for x in
[a,b]. We leave as an exercise a proof that given any gauge y on [a, b], there exists a
tagged partition of [a, b] that is y-fine.

The gauge integral is defined as follows. Let f be a real-valued function defined on
the interval [a, b]. The number I is the gauge integral of f on [a,b] if for each
positive € there is a gauge 7y such that if {z;,[x;_,, x; ]} is a y-fine tagged partition of
[a, b], then

= ¥ f(5)(xc—xi) | <€

k=1

If v is a gauge determined by a function whose intervals have lengths bounded
away from 0, then the set of tagged partitions is the same as that used for a Riemann
integral. Therefore, the gauge integral includes the Riemann integral. The generality
of the gauge integral can be seen by some examples.

Example 1. Let f(x) be the Dirichlet function on [0,1], ie, f(x)=1 for x
rational and f(x) =0 for x irrational. We show that this function has a gauge integral.
Let €> 0, and let {r;} be an enumeration of the rationals in [0, 1]. Choose a gauge y
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as follows: For each k, let y(r)= (r,; - 2—;—1, re+ 2—f+—1) For irrational x, let
y(x) =(=1,2), say. Let {z},[x;_;, x; ]} be a y-fine tagged partition of [0, 1]. Then if
zp =1 [l —xy) < o If 7 s not rational, f(z,)(x; —x;_;) = 0. Therefore

n n
Y f(z)(m=m) < X op <e.
k=1 k=1
This shows that the gauge integral of the Dirichlet function is 0. Because f is
everywhere discontinuous, it does not have a Riemann integral. Since f is constant
except for a set of measure zero (the rationals), however, it does have a Lebesgue
integral. Note that the way we selected this gauge corresponds to how one shows that
a countable set has Lebesgue measure zero; with a slight modification, this same
technique will show that the gauge integral exists for any continuous function whose
definition is altered in any bounded way on any countable set.

Example 2. Let F(x)=x?sin(1/x?) for x#0, F(0)=0. This function has a
derivative at each point of [0,1] (the difference quotient is needed to find F'(0)).
However, the derivative F'(x) is not Riemann integrable on [0, 1], since it is
unbounded. The derivative is not Lebesgue integrable either, since JHE' ()] dx = e,
It turns out, however, that F'(x) is gauge integrable, and the Fundamental Theorem
of Calculus applies, so

fOlF’(x) dx=F(1) — F(0) = sin 1.

This result follows from the theorem proven below.

The Fundamental Theorem of Calculus consists of the equation [’f(x)dx =
F(b) — F(a), where F is some type of antiderivative of f on [a, b], together with
various hypotheses on f or F. The version of this theorem usually seen in elementary
calculus requires that F'(x) = f(x) at each x in [a, b], and that f be continuous on
[a, bl

The continuity hypothesis can be relaxed; we need only assume that f is Riemann
integrable on [a, b]. One proof of this version of the theorem follows from the

following chain of equalities, where x, x;,..., x, is a partition of [a, b]:

n n
F(b) —F(a) = ]Z (F(x) = F(x,)) = AZ J(z) (2 = xp-1)-
k=1 k=1
The first equality is valid because the middle term is a telescoping sum, and the
second follows by applying the mean value theorem to F on each subinterval
[x;_,, x;] The last term is a Riemann sum approximating the integral of f. The
hypothesis that f is Riemann integrable is satisfied for every bounded function f that
is continuous almost everywhere. However, the hypothesis that f has an antiderivative
F on [a,b] is difficult to check. For example, a function f with a simple jump
discontinuity does not have an antiderivative. (Recall that derivatives must satisfy the
intermediate value property, and so cannot have jump discontinuities. See, e.g., [2, p.
122])

For the Lebesgue integral, the Fundamental Theorem of Calculus holds if and only
if () F is absolutely continuous; and (ii) F' =f almost everywhere on [a, b]. One of
the most important properties of the gauge integral is that it satisfies an unrestricted
form of the Fundamental Theorem of Calculus: if F’ = f on [a, b], this theorem holds.

The parametric derivative We turn now to our second main concept, the para-
metric derivative [7]. (We will comment later on relationships between the parametric
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derivative and the gauge integral.) The idea involved in defining this generalized
derivative is not difficult to grasp. In some cases, by parameterizing the independent
variable in a non-differentiable function, the composite function is differentiable.

We say that the function F, defined on [a, b], has a parametric derivative f on that
interval if there exists a strictly increasing differentiable function ¢, where ¢ maps
some interval [a, B] onto [a, b], so that F o ¢ has an ordinary derivative on [a, B],
with

(Fod)(t)=f(d(t))d'(t).
Some facts follow from the definition:

1. Since ¢(t) =t is possible, the parametric derivative generalizes the ordinary

derivative.

If ¢'(¢) # 0, then F'(x) =f(x) is the ordinary derivative at the point x = ¢(¢).

3. If the parametric derivative of F is zero at each point of [, b], then F is
constant.

4. Parametric differentiation is a linear operator; thus (kF) = kF' if k is constant,
and (F + G) = F' + G’ (here, primes denote parametric differentiation).

o

Items 1, 2, and 3 may be checked by the reader. Item 4 is more difficult to prove; for
more details, see [1]. Observe also that f need not be unique; if ¢'(¢) = 0, then f can
take any value at the point x = ¢(¢).

Some examples will illustrate the concept of parametric derivative.

Example 3. Let F(x) =|x| on [—1,1]. This function has no derivative at x = 0. If
dp(t)=t°, —1 <t <1, the resulting function F($(¢))=[t®| is everywhere differen-
tiable. A parametric derivative of F is then f, where f(x) = —1 for x <0, f(x) =1
for x>0, and f(0) arbitrary.

Example 4. Let F(x) =xsin(1/x) for x # 0, and F(0) = 0. This function also fails
to have a derivative at x = 0, but composing F with ¢(¢) =t shows that F has a
parametric derivative.

These two examples are discussed by A. M. Bruckner as part of general considera-
tions related to “creating” and “destroying” differentiability [3]. He describes how a
homeomorphic change of variables (composition with ¢ as above) can transform
nondifferentiable functions into functions with various differentiability properties. He
obtains the following somewhat surprising result:

Example 5. The Cantor function is a continuous, nondecreasing function on [0, 1],
which is constant on each interval complementary to the Cantor set, and maps the
Cantor set onto [0,1]. This function can also be made differentiable by a (highly
nontrivial) change of variables. (For details on the Cantor function, see, e.g., [2, pp.
135-139] or [6, P 1291)

The main theorem We now proceed to our main theorem. Observe that since
ordinary derivatives are also parametric derivatives, the proof is also valid for ordinary
derivatives. From now on, integrals will be gauge integrals.

THEOREM. Let f(x) be a parametric derivative of F(x) on [a,b]. Then f(x) is
gauge integrable on [a, b], and

f:f(x) dx = F(b) - F(a).

We do the main computation of the proof in a lemma.
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LEMMA. Let F(x) have a parametric derivative f(x), with differentiable parametric
representation ¢(t) on [c,d]. Then, given p €[c,d] and €>0, there exists 6> 0
such that if p— 8 <s <t <p + 8, then

[F(o(1)) = F(6(5)) =f(d(p))(d(t) = d(s))| < e(t=5).

Proof. Using the definition of parametric derivative and standard limit theorems,
we get

OISO R PE O EL G

t—p

So given € > 0, there exists 8 = (e, p) > 0 such that if 0 <t —p < 8, we have

HEGEEE MO EL IR

or, equivalently

|F((1)) = F(¢(p)) —f((p))(6(t) = d(p))| <e(t—p).

Since 0 <p —s < 8, it follows from the triangle inequality that

[E($(1)) —F(¢(s)) —f(d(p))(d(t) — ¢(5))|
=[F(¢(t)) =F(¢(p)) +F(d(p)) —F((s))
—f(d(p))(6(t) = d(p)) =f(S(p))(S(p) = d(5))]
<e(t—p)te(p—s)=e(t—s).
This completes the proof of the lemma.

To prove the theorem, given a ¢(¢) and any €> 0, let x, € [a, b]. We note that
since ¢(¢) is a strictly increasing continuous function, it is a homeomorphism; thus
¢! exists and is continuous. If p,= ¢ '(x,) E[c,d], let §=05(e/(d —c), p,) be
given by the lemma. Then, by the continuity of ¢! at x,, there exists a §, > 0, such
that if |x; —x,| < 8, and |y, —x,|< 8}, and ¢; = ¢~ '(x}), and s, = ¢~ '(y,), then
|t; = pol< 8 and |s; — po| < 8. Furthermore, if we put y; <x, <xy, then s; <p, <
£,

Applying the lemma to sy, p,, and ¢, gives

|F(¢(t1))_F(¢(31)) _f(¢(Po))(¢(t1) ‘15(31))' _C(tl 51)-

For each x in [a, b], we choose a 8,(x) in this manner. This provides a gauge on
[a,b]; for each x we choose the open interval (x —8,(x), x + 8(x)). Let D=
{z,,[x,_1,x;: 1 <i<n}bea 8 -fine tagged partition of [a, b]. Then

_1)—(F(b)—F(ﬂ))‘

= ';lef(zi)(xi_xi Z(F( )~ F(xio 1))‘

i=1

] {F(xo—F(xi_l)—f(z»(xi—xi_l)}"

i=1
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Define ¢; and ¢, 1 <i <n, by ¢ '(z) =c, and ¢~ (x))=t,, 1 <i <n. Since x,_,
and x; are contained in (z; — §(z,), z, + 6,(3,)), it follows that t,_; and t; are
contained in (¢; — 8(c,), ¢; + 6(c,;)). So the last expression becomes

;il {F(¢(tz)) - F(¢(ti~1)) _f(¢(ci))(¢(ti)) - ¢(ti—1)}

IA

% [F(0(6) = F0(t-1)) ~F(#(e))(#(0) = #(1,-1)]

n

€
= Z (l_c(ti_ti—l)=e’

i=1

where the last inequality uses the lemma. This completes the proof of the theorem.

We have found the preceding proof appropriate for advanced calculus. Although
the proof is a bit long, the ideas are not difficult, and they offer students a glimpse of
some deep ideas in analysis.

Parametric derivatives and gauge integrals Tolstov [7] proved that a function
F(x) on [a, b] has a parametric derivative f(x) there if and only if f(x) is integrable
in the restricted Denjoy sense on [a, b], with [’f=F(b) — F(a). (Tolstov’s result is
discussed in [3, Theorem 4].) This provides our rationale for the connection between
the parametric derivative and the gauge integral in the above theorem, because the
gauge integral is equivalent to the restricted Denjoy integral [5]. All this implies that
the converse of our theorem is true, although we have no elementary proof of this
fact. (The main problem is finding a ¢ in the definition of parametric derivative.) It
would be interesting to obtain an elementary proof.
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Introduction A finite set A has a size, | Al, the number of elements in A. Given any
two finite sets A and B, it is intuitively clear that exactly one of the following relations
holds: |A| < |BI, |A]l = B, |B| < |Al. This is so because the set Z* of non-negative
integers satisfies the trichotomy property: for m,n €Z" we have n <m, n=m, or
m <n, and each of these relations excludes the other two. Cantor extended the notion
of the size of a set by introducing cardinal numbers. Two sets A and B have the
same cardinality (i.e., size), and we write |A| = |B], if there exists a one-to-one and
onto function f: A — B. If there exists a one-to-one function f: A — B, but
|A| # |BI, then |A| < |B]. It is certainly desirable that the cardinalities of two sets A,
B be uniquely comparable, i.e., that precisely one of the relations [A| < |B|, |A| = |BI,
or |B| < |A| holds. In the beginning of his famous Beitriige [1,2,3], Cantor gave a
simple argument showing that at most one of the relations a <8, =8, and B < «
holds for any two cardinal numbers a and B [3, pp.89-90]. He then wrote:

On the other hand the theorem that, with any two cardinal numbers o
and B, one of those three relations must be realized is by no means self
evident, and can hardly be proved at this stage.

After this statement, Cantor claimed that the theorem would be proved at a later
stage. It wasn’t proved at a later stage.

Although well ordered sets and ordinal numbers were defined and studied by
Cantor in the second part of the Beitrige [2], he proved trichotomy for ordinals in
section 13 of the first part [1,3]. (Well ordered sets and ordinal numbers will be
defined later in this note.) In [7,8], Zermelo proved that every set can be well
ordered, and pointed out that this fact, coupled with ordinal trichotomy, implies
trichotomy for cardinal numbers.

A simple, straightforward proof of cardinal trichotomy, using Zorn’s lemma, (see [5,
section 18] for a statement and proof of Zorn’s lemma) is as follows: Let A and B be
two sets with |B| £ |A|. A function f: A"~ B with A’ CA is called a partial function
from A to B. Let F be the set of all one-to-one partial functions from A to B. Let
fi: A= B and f,: A, — B be two partial functions from A to B, with A, CA,. If
the restriction of f, to A, is f}, then f, is called an extension of f,, and we write
f1 <fs. It is easy to see that & is a partially ordered set under the relation <. By
Zorn’s lemma, there exists a maximal element f€%. Let A’ be the domain of f, and
let B’ be the range of f. If B'= B, then |B| < |Al, a contradiction. If A’ =A then
Al < |B|. If A’ cA and B’ CB, then choose a € A\ A" and b € B\ B'. Define f":

AU{a} = B by
, f(x) ifxed
x =
(=) {b if x=a.
Then ' €%, and f<f’, a contradiction.
In this note, the method just used to prove trichotomy for cardinal numbers will be

employed to prove ordinal trichotomy. The set .# will be taken to be a set of certain
order-preserving functions, and again Zorn’s lemma will yield the result. There is a
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pedagogical advantage in this proof. A beginner in set theory can first see the method
of proof in the easier cardinal case, and then better understand the proof of the more
complicated ordinal case. (It is interesting to note that it was easier for Cantor to deal
with trichotomy for ordinals than for cardinals. He never succeeded in proving
cardinal trichotomy.)

The trichotomy theorem for ordinals was also proved by Baire, Hausdorff, and
others. Hausdorff’s proof is especially attractive (see the Comparability Theorem in
[6]). The proof relies on the fact that the set W(a), consisting of all ordinals less than
a given ordinal «, is a well ordered set with ordinality .

Much information about Cantor and his work may be found in [4].

Ordinal Trichotomy A partially ordered set is said to be well ordered if every
non-empty subset of A possesses a smallest element.

All sets in this paper will be assumed to be well ordered.

The smallest element of a set A will be denoted by min(A). For a € A, the set
s(a) ={x € Alx <a} is called the initial segment of a. A function f: A — B is said to
be order preserving if f(a;) <f(ay) for all a,,a, satisfying a; <a,. If an order
preserving function f: A — B is onto, then f is called a similarity, and the sets A
and B are said to be similar, and we write A = B. Two sets A and B have the same
ordinality, ord (A) = ord(B), if A =B.If A= B’ for some subset B'C B, but A = B,
then ord (A) < ord (B). The domain of a function f will be denoted dom (f). A set A
is a section of a set B if A =s(b) for some b € B.

The following propositions are well known and easy to prove (see, e.g., [5, p.67 and

p-72D.

ProPOSITION 1. (Transfinite induction) Let A'CA. If s(a) CA' =a €A for all
a €A, then A = A.

PROPOSITION 2. Let f: A — A, be order preserving. Then a < f(a) for all a € A.

PROPOSITION 3. Let f: A — B, be a similarity. Then f: s(a) = s(f(a)) is a similar-
ity for all a € A.

A simple consequence of Proposition 2 is the following result of Cantor [3, p.144],
which he called B:

THEOREM B. Let a € A. Then A = s(a).
Theorem B implies the following corollary:

LEMMA 4. For two sets A and B, at most one of the following conditions is
satisfied: A is a section of B; A = B; B is a section of A.

Let A'CA be such that either A=A or A'=s(a) for some ¢ €A. A function
fi A’ — B satisfying f(a) = min(B \ f(s(a)) for all a € A’ is called a partial similarity
from A to B, or simply a partial similarity.

Let f: A— B be a similarity, let @ €A, and let b € B \ f(s(a)). Since f is onto,
there exists ' € A such that f(a') =b. Since b & f(s(a)), it follows that @ & s(a), i.e.,
a<d. Hence f(a) <f(a), and so f(a)=min(B \ f(s(a)). This shows that every
similarity is a partial similarity.

LEMMA 5. Let f,g: A'— B be partial similarities. Then f=g.

Proof. Let A" ={a € A'|f(a) = g(a)}. In order to show that A" = A’ it suffices to
show, by Proposition 1, that for « € A’ the assumption s(a) C A" implies that ¢ € A",
or equivalently, that f(a) = g(a). Now f(a) = min(B \ f(s(a))) = min(B \ g(s(a)))
= g(a).
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LEMMA 6. Let f: A'— B be a similarity. Then f: A' — f(A') is a partial similarity.

Proof. Let ay,a, € A, with a, <a,. Since f(a,) € f(s(ay)) and f(a,) & f(s(ay)), it
follows that f(a;) # f(a,). It therefore suffices to show that f(a,) <f(ay). The
inclusion s(a;) Cs(a,) implies that B \ f(s(a,)) € B \ f(s(a,)), which yields that
f(a) = min(B \ f(s(a,)) < min(B \ f(s(a,))) = f(a,).

LEMMA 7. Let f:A' — B be a partial similarity. Then either f(A')) =B or f(A') =
s(b) for some b € B.

Proof. Suppose that f( A') # B. Let b = min(B \ f(A")). Clearly, s(b) Cf(A). Let
d € A'. Then s(a') CA' = B\ f(A") CB \ f(s(a')). Taking the minimum of these sets
shows that f(a') <b, and from the definition of b, it is clear that f(a') #b.
Therefore, f(a') <b, and so f(A") =s(b).

An immediate consequence of Lemmas 6 and 7 is as follows:

COROLLARY 8. Let f: A" — B be a partial similarity. Then either A' =B, or A' is a
section of B.

Let & denote the set of partial similarities from A to B, and let f; <f, denote the
relation that f, is an extension of f. It is readily seen that 7 is a partially ordered set
under this relation.

LEMMA 9. Let fy, f, €F. If dom(f)) Cdom(f,) then f, is an extension of f,.

Proof. If dom(f)) =dom(f,) then f, =f,, by Lemma 5. It may therefore be
assumed that dom(f;) =s(a), with a € dom(f,) =A". Now f,: A —=f,(A) is a
similarity, so fy: s(a) = s(f,(a)) is also a similarity, by Proposition 3. Since similarities
are partial similarities, it follows that both f;, fy:dom(f,) = B are partial similarities.
Now Lemma 5 implies that the restriction of f, to dom(f,) is fi, i.e., f; <f.

Lemma 9 and the fact that A is well ordered yields that & is well ordered.
LEMMA 10. F possesses a maximal element.

Proof. Consider the function f: {min(A)} = B defined by f;(min( A)) = min(B).
Since f, belongs to &, F# . Let C={f,li €I} be a chain in &, and let A'=
U, ;dom(f}). Define f: A'— B by f(a) =f(a) for a € dom(f;). Lemma 9 assures
that f is well defined. Clearly f is an extension of f; for each i € I. To show that f is
an upper bound for C in & it suffices to show that either A'=A or A’ =s(a) for
some a €A, and that f is a partial similarity. If dom(f;) = A for some i € I, then
f=/f; is a partial similarity. It may therefore be assumed that for each i €I,
dom(f,) = s(a,) for some a; € A. Suppose that A’ # A. Let a = min(A \ A). Clearly,
s(a) CA. Let @ € A'. Then d € s(a,) for some i €1. If a < then a €s(a,) CA, a
contradiction. Therefore @ € s(a), and so A’ = s(a). Now

f(d) =f(a')=min(B\f(s(d')))=minB\f(s(d")),
and so f is a partial similarity. By Zorn’s lemma % possesses a maximal element.

THEOREM 11. Precisely one of the following conditions is satisfied: A is a section of
B; A =B; B is a section of A.

Proof. By Lemma 4, it suffices to show that at least one of the above conditions is
satisfied. Let f: A'— B be a maximal element in %. There are three cases to
consider: (1) A'=A;(2) A # A and f(A)=B;(3) A # A and f(A) # B. In case (1),
Corollary 8 yields that either A = B or A is a section of B. Clearly, B = A’ in case (2).
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Since in this case A" = s(a) with a € A, it follows that B is a section of A. In case (3),
A" =s(a) for some a € A. Let b =min(B \ f(A")). Define f: A'U{a} = B by

flo= {5

It is readily seen that f €%, and that f <f; this contradiction completes our proof of
ordinal trichotomy.
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Inclusion-Exclusion and Characteristic Functions

JERRY SEGERCRANTZ
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FIN-02015 HUT
Finland

Introduction The inclusion-exclusion formula of set theory and combinatorics con-
cerns the number of elements in unions of finite sets. In the simplest case, it takes the
form

n(AUB)=n(A)+n(B)—n(ANB), (1)

where A and B are subsets of some universal set S, and n(X) denotes the number
of elements in a set X. In the case of three subsets A, B, and C, we have

n(AUBUC)=n(A)+n(B)+n(C)-n(ANB)—n(BNC)
-n(CNA)+n(ANBNC).
The general formula can be written as follows:
(A UA, U UA )
= X a(A) = X w(ANA)+ X a(ANANA)- -
1

1<i<p <i<j<p 1<i<j<k=<p
+(=D)" (A NA N NAL). (2)

Although sometimes classified as an advanced counting technique (see, e.g., [2]), the
formula is a fairly elementary result. When the number of subsets involved is small,
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Since in this case A" = s(a) with a € A, it follows that B is a section of A. In case (3),
A" =s(a) for some a € A. Let b =min(B \ f(A")). Define f: A'U{a} = B by

flo= {5

It is readily seen that f €%, and that f <f; this contradiction completes our proof of
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Although sometimes classified as an advanced counting technique (see, e.g., [2]), the
formula is a fairly elementary result. When the number of subsets involved is small,
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say 2 or 3, its truth can be seen immediately by means of a Venn diagram. It is
nonetheless an important general prihciple of combinatorics, used, for instance, to
find the number of derangements of n objects. (A derangement is a permutation in
which no element occupies its original place.)

In [2] the formula is proved by showing that “an element in the union is counted
exactly once by the right-hand side of the equation.” A similar proof is given in [1].
Another approach is to apply induction, after establishing the intuitively obvious case
of two sets.

We would like to draw attention to another proof, which we think deserves to be
better known (the author could not find it in any of his numerous books on discrete
mathematics). The main idea of the proof is certainly not new (we welcome refer-
ences).

The characteristic function We begin by defining our main tool and stating some
of its basic properties. For A C S, the characteristic function q ,: S —{0,1} is defined
9al? 0 ifxe&A
The cardinality (number of elements) of A can now be written as
n(A) = X qa(x). (3)
*E€S
We will also need the formulas
Gans =qaqs (4)
gr=1-q, (5)
where A is the complement of A, and 1 is the unit function: 1(x) =1 for all x €.
The formulas (4) and (5) are easily checked: (¢ ,q5Xx) = q,(x)gz(x) is 1 exactly

when x belongs to both A and B; and A =g )x)=1x) =g, (x)=1—qu(x)is 1
exactly when ¢q,(x) is 0, i.e., when x € A.

Proving the inclusion-exclusion formula Let us first attack the simple case with
two subsets. To begin with, a suitable expression for the characteristic function of
A U B is derived:

Gaus=1-qzom (by(S))
=1-qzns (by de Morgan’s law)
=1-q93 (by (4))
=1-(1-g,)(1-gs) (by (5))
=1-(1—9,—95tqaqs)
=qa+ 95— 9495 =92 T 95 —Gans- (by (4))

Using equation (3), we now obtain formula (1):

n(AUB) =} qaup(x) = Z (9a+98=Ganp)(x)

xES xE€S

= 'Zs {ga(x) +‘73(x) —qans(x)}

= 2 qa(x) + X qs(x) = X qans()
xeS$ xE€S x€S

=n(A)+n(B)—n(ANB).
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A similar proof can be carried out in the general case:

Gau-uva, =1=qzo= UA, " 1-gxn o nE,

1= (1-qa) (144,

= X qa,— ) Gada,t )y Ga9a,9a, ="

1<i<p l<i<j<p l<i<j<k=p

'*'(_l)PJrlquqA2 " qa,
Z qa, — Z QA‘.r‘\Aj"— Z Ganana, — "7

1<i<p 1<i<j<p 1<i<j<k<p

+1
+(_1)P Ganag-nAy

P

from which (2) is obtained by means of (3).

Remarks Our proof develops the formula “from first principles,” whereas in
approaches like the one in [2], the formula has to be known at the outset as a guess or
hypothesis, and the proof consists of a verification of the hypothesis. On the other
hand, our proof cannot be fully understood and appreciated without a modest amount
of familiarity with abstract algebra or functional analysis (the fascinating insight that
functions can be treated as elements of an algebra—added, multiplied, etc.). This
may, unfortunately, limit the proof’s usefulness in basic courses.

We note, finally, that the finiteness of the set S is not essential; one can just replace
the sum in (3) by a suitable integral. The finiteness of the number of subsets
considered is more difficult (impossible?) to get around.

A generalization can be achieved by introducing a weight function w(x), and
replacing n( A) by a more general “magnitude”

m(A) = T w(x)q(x).

xtE€S
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Proof Without Words: Bijection Between Certain Lattice Paths

Dedicated to Ernst Specker on the occasion of his 78th birthday.

flip horizontally ~

\\ ’ )
N ’
’
N,
~ v

ab: lattice path with starting point and endpoint on the same (given) level
p: first minimum on the path ab
pe: lattice path staying above initial level (non-ruin path)

Conclusion There exist as many non-ruin paths of length 2n as paths of length 2n
(2)1 )

with starting point and endpoint on the same level, namely |

—NorBERT HUNGERBUHLER
ETH-ZeNTRUM
CH-8092 Ziricu

SWITZERLAND

An Antisymmetric Formula for Euler’s Constant

JONATHAN SONDOW
209 West 97th Street
New York, NY 10025

The formula

2}

y=tm ¥ (-] (1)

. +
x>l n=1 n x

shows that Euler’s constant, y, which is defined (see [1]) by

y= lim (1+%+"'+;ll——logn), (2)
n—>x

is the limit as x approaches 1 from above of a series whose terms are antisymmetric in

n and x. The formula also implies that y is the limit as x = 1* of the difference

between the p-series 7_, 1/n* and the geometric series X; _; 1/x", because

F(hod)onlogl
n=1 n’ x! n=1 n n=1 x

for x> 1. On the other hand, since the geometric series sums to 1/(x — 1), the
formula is itself an immediate consequence of the fact (see [4, Section 2.1]) that

lim (i(x)" ! )=7,

-1 x—=1

where {(x)=X%_,1/n" is the Riemann zeta function. (For a connection between y
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and the zeros of the zeta function, as well as a wealth of other information and
references on v, see [2].)
We now give an independent proof of the formula. First, note that

v= lim (kz %~log(n+1)

-
n -1

is equivalent to the definition of vy, because

lim (logn —log(n+1)) = hm log( ) =0.

n—w

Now write

and

log(n+1) fn+1 dt Z fL+1 dt

k=1
as sums of integrals. It follows that the limits in equations (1) and (2) can be written as

. i 1 n+1dt
hm Z (F—L t—{') (3)

. +
ol n=1

and

i (l 3 fn+1 di )
n=1 n n t)

respectively. The two limits are therefore the same, since the latter series is the
term-by-term limit of the former series, which we now show converges uniformly, so
that interchanging the limit and the summation is justified. To prove uniform
convergence of the series in formula (3) on the interval [1, 2], we apply the Weierstrass
M-test (see, e.g., [3]), using the series Yn~2 for comparison:

1 n+1dt_ n+lf 1 1 LR Y e S
0<'_?_— t_‘_f (F_F)dt_f (f:\tt du)dt

n n n n

1
<xn 71 fn+ (ft(lu) dt = %xn"‘"l <n?

n n

for 1 <x <2. This completes the proof of the antisymmetric formula for Euler’s
constant.
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Triangles with the Same Centroid

AYOUB B. AYOUB
Pennsylvania State University
Abington College

Abington, PA 19001

Introduction A well known fact in Euclidean geometry is that the medians of a
triangle intersect in one point, called the centroid. If G is the centroid of the triangle
ABC, then G divides each of the medians AL, BN, and CK in the ratio 2:1. This
property is used to derive the algebraic relation, G = $(A + B + C), where A, B, C,
and G are treated here as numbers in the complex plane [3]. Another known property
of G, is that it is also the centroid of the medial triangle KLN [1], [2] (Ficure 1a). In
his  Advanced Euclidean Geometry [4, p. 175], Roger Johnson brings to our attention
the following pleasant result concerning G.

THEOREM 1. If the vertices of a triangle lie on the sides of another, and divide them
in a fixed ratio, the triangles have the same centroid G (Ficure 1b).

FIGURE 1

Johnson provides a synthetic proof, which he attributes to the German geometer
Wilhelm Fuhrmann (1833-1904).

Generalization In this note, we generalize Theorem 1 as follows:

THEOREM 2. If on the sides of an arbitrary triangle ABC three similar triangles
AKB, BLC, and CNA are drawn outward (or inward), then the triangles KLN and
ABC have the same centroid G (Ficure 2a and 2b).

FIGURE 2
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This theorem may be interpreted in two different ways. The synthetic interpreta-
tion is that the six medians, three of each of the triangles KLN and ABC, concur in
the point G. The analytic interpretation is that the arithmetic mean of the complex
numbers representing the vertices K, L, and N is the same as that of the vertices A,
B, and C. We will prove Theorem 2 using complex arithmetic.

Consider the points A, B, C, K, L, and N as numbers in the complex plane. The
similarity of the triangles AKB, BLC, and CNA implies that for some fixed complex
number Z#0, K—A=Z(B—A), L-B=Z(C—B), and N-C=Z(A—-C). If
these equations are added, it follows immediately that K+ L + N =A + B + C, which
completes the proof. The triangles AKB, BLC, and CNA will be outward (or inward)
relative to the triangle ABC according to — a7 <arg(Z) <0 (or 0 <arg(Z) < 7).
When arg(Z) =0 or arg(Z) = 7, each of the triangles will degenerate into collinear
line segments. In particular, if arg(Z) =0 and |Z| < 1, the points K, L, and N will
divide AB, BC, and CA respectively in the same ratio and this represents the case of
Theorem 1.

Applications First, let us draw the three squares AA, B, B, BB,C,C, and CC, A, A
externally on the sides AB, BC, and CA of an arbitrary triangle ABC. Denote the
centers of the squares by K, L, and N respectively. Then by Theorem 2, the triangles
ABC, KLN, A,B,C,, and A,B,C, all have the same centroid G (see Ficure 3).

Second, suppose we draw equilateral triangles AC, B, BA,C, and CB, A externally
on the sides of the triangle ABC. Denote the centroids of the equilateral triangles by
K, L, and N respectively (see Ficure 4).

%
. //\ 5
2 N o
L
. B,
A B
K
Ay By G
FIGURE 3 FIGURE 4

Theorem 2 implies that the triangles ABC, A;B,C,, and KLN have the same
centroid, G. The triangle KLN is sometimes called Napoleon’s triangle. The French
general is said to have proved that it is equilateral [2], [3], and [5].

The converses The converse of Theorem 1 asserts that if one triangle is inscribed
in another, so that both have the same centroid, then the vertices of the former divide
the sides of the latter in equal ratios. Johnson hints that this converse can be proved
by reversing Fuhrmann’s proof of Theorem 1.

The converse of Theorem 2 may be stated as follows: If on the sides of an arbitrary
triangle ABC, three triangles AKB, BLC, and CNA are drawn outward (or inward),
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such that the triangles KLN and ABC have the same centroid, then the triangles
AKB, BLC, and CNA are similar. We will give a counterexample to show that this
converse is false.

Let ABC be a scalene triangle with centroid G and circumcenter O (see Ficure 5).
Take an arbitrary point K on the smaller arc AB of the circumcircle of triangle ABC.
Join KG and extend it to E such that GE = §KG. Join OE and erect on it at E a
perpendicular that meets the circumcircle at L (on arc BC) and N (on arc AC).

FIGURE 5

It is easy to see that triangle KLN has G as its centroid. Hence triangles ABC and
KLN have the same centroid. However, the triangles AKB, BLC, and CNA are not
similar, because the angles AKB, BLC, and CNA are inscribed in unequal circular
segments.

Triangles with the same nine-point circle The circle that passes through the
midpoints of the sides of a triangle is called its nine-point circle [2]. In Ficure 6,
triangles ABC and KLN are inscribed in a circle with center O and have the same

FIGURE 6

centroid G. Consequently, the two triangles have the same nine-point circle whose
center O' divides OG externally in the ratio 3:1 [1]. Now, if K moves along the
circumcircle of the triangle ABC, then the infinitely many triangles such as KLN will
have a common nine-point circle traced by the point E. In 1822, Karl Feuerbach of
Germany proved that the nine-point circle of a triangle touches the incircle and the
three excircles of the triangle [1], [4]. This theorem, together with the existence of
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infinitely many triangles sharing the same nine-point circle, implies that this circle
touches infinitely many incircles and excircles,

Acknowledgment The author would like to thank the referees for their valuable suggestions.
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Editor’s Notes

Articles in the December 1997 MAGAZINE drew several letters. Concerning a
Proof Without Words (page 380), Harold Boas wrote:

Your readers may be interested to know that the PWW showing the area of a
right triangle to be equa] to the sum of the areas of two lunes. ..was discovered in
the 5th century BC by Hippocrates (the mathematician, not the physician)... .
The fame of Hippocrates indeed rests largely on his quadrature of lunes, the first
rigorous determinations of areas of curves regions: see, for example, chapter 1 of
the 1990 book Journey Through Genius, by William Dunham.

Several readers commented an The truel (pp. 315-326), by D. M. Kilgour
and S. J. Brams. Harold Boas wrote:

The article...by D. M. Kilgour and S. J. Brams rekindled a fond childhood
memory: my father reading aloud A. P. Herbert’s comic drama Fat King Mellon
and Princess Caraway. Scene 111 features a humorous encounter in which the King
(traveling incognito) aims his blunderbuss at the Princess (in disguise), who draws
her bow at the highwayman, who in turn covers the King with his pistol. All fire at
once, and the universally fatal results necessitate the intervention, deux ex
machina, of the Fairy Gurgle to permit action to continue. The earliest (admittedly
nonmathematical) reference I know to truels is this play, written for the 1924
birthday of a ten-year-old girl, and published in 1927 by Oxford University Press.

Editor’s Notes continue an page 231
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Answers

Solutions to the Quickies on page 226.

A880. The right-hand side is clearly the number of one-to-one functions from an
n-element set to itself.
Since there are (n — k)" functions from an n-element set to an (n — k)-element

k
is the number of onto functions from an n-element set to itself (by the inclusion-

exclusion principle).
Finally, since the one-to-one functions and the onto functions from an n-element
set to itself are identical, equality follows.

set, and an n-element set has (") subsets with (n — k) elements, the left-hand side

A881. The only four such functions are

flx,y) =x,f(x,y) =y, f(x,y) =min{x, y}, f(x, y) = max{x, y}.

Clearly f(x, y) =x =1y on the line x=y. Let A={(x, y): f(x, y) =x}. Then Aisa
closed set and its complement A° is the open set A°={(x, y): f(x, y) =y, x #y}.
Similarly, B ={(x, y): f(x, y) =y} is closed and B ={(x, y): f(x, y) =x, x #y} is
open. The open half-plane U={(x, y): x>y} is a connected set. Since U is the
disjoint union of the open sets U N A° and U N B¢, either UN A°=J or UN B® = .
Thus, either f(x, y) =x or f(x, y) =y on U. Similarly, either f(x, y) =x or f(x, y)
=y on {(x, y): x <y}. The four combinations of possibilities give rise to the four
functions listed above, all of which are continuous.

A882. The matrix A has q’"("_’") right inverses over F,. To see this, we note that,
since AB =1, for some n Xm matrix, B, A must have full rank m. Hence the
nullspace of A has dimension n —m and consists of ¢"~" vectors. Therefore, the
right inverses of A are precisely the (¢"~™™)" matrices obtained from B by adding to

each of the m columns of B any one of the ¢"™" vectors in the nullspace of A.

Editor’s Notes (continued from page 224)
Reader Paul Boisvert also commented on The truel, by Kilgour and Brams:

It seems impossible to believe, but the sad truth is that the otherwise interesting
article ... is marred by a crippling flaw. [The authors] make reference to two
Q. Tarantino films involving truels, but neglect to discuss the original, perfect, and
still inimitable truel scene in filmic history: the climax of The Good, the Bad, and
the Ugly. To compare Tarantino’s glib, derivative efforts to Sergio Leone’s ultimate
confrontation among Eastwood, Van Cleef, and Wallach (forming, as they did, a
human equilateral triangle inside the circular center of the barren graveyard...) is
blasphemy. [Leone’s truel] perfectly illustrates the way in which real life always
escapes mathematical modeling. The one thing neither [the authors] nor Eli
Wallach took into account was that one player might cheat by surreptitiously
removing someone else’s (Eli’s) bullets. As Eli survived—proving that the best
strategy may be to have no ammunition whatsoever—The Ugly added a new fillip
to the theory, one that I hope the authors will consider in future articles.
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GEORGE T. GILBERT, Editor

Texas Christian University

ZE-LI DOU, KEN RICHARDSON, and SUSAN G. STAPLES, Assistant Editors

Texas Christian University

Proposals

To be considered for publication, solutions
should be received by November 1, 1998.

1549. Proposed by K. R. S. Sastry, Bangalore, India.

Given a positive integer k, prove that for all sufficiently large x, there exist at least
k primitive Pythagorean triangles whose sides all have lengths in the interval [x,2x].

1550. Proposed by Mihdly Bencze, Brasov, Romania.
Let z;, 1 <i<n, be complex and let s, =2z, +z,+ *** +z;, 1 <i <n. Prove that

Y ls—zls ¥ (0 1=Kl + (k= 2ls,]).
k=1

1<i<j<n

1551. Proposed by Howard Morris, Germantown, Tennessee.

For which values of « is

/2 + n+l/2 _n—q
lim n? In ™ (n cl?)“ ¢

n—cw
finite?

1552. Proposed by Wu Wei Chao, Guang Zhou Normal College, Guang Zhou City,
Guang Dong Province, China.

Find all functions f: R — R that satisfy

flx+yf(x)) =f(x) +2f(y)
for all x and .

We invite readers to submit problems believed to be new and appealing to students and teachers of
advanced undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any
bibliographical information that will assist the editors and referees. A problem submitted as a Quickie
should have an unexpected, succinct solution.

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a
separate sheet containing the solver’s name and full address.

Solutions and new proposals should be mailed to George T. Gilbert, Problems Editor, Department of
Mathematics, Box 298900, Texas Christian University, Fort Worth, TX 76129, or mailed electronically
(ide(zlly as a LATEX file) to g.gilbert@tcu.edu. Readers who use e-mail should also provide an
e-mail address.

225


http://www.jstor.org/page/info/about/policies/terms.jsp

226 MATHEMATICS MAGAZINE
1553. Proposed by Paul Zorn, St. Olaf College, Northfield, Minnesota.

What complex numbers are the root of some polynomial with positive coefficients?

Quickies

Answers to the Quickies are on page 231
Q880. Proposed by Ira Rosenholtz, Eastern Illinois University, Charleston, Illinois.

Show that
> (—1)"('}2)(11 —k)"=nl
k=0

Q881. Proposed by Sergei Ovchinnikov, San Francisco State University, San Fran-
cisco, California.

Describe all continuous functions f(x, y) of two real variables such that f(x, y) =«
or flx, y) =y for all (x, y) € R*
Q882. Proposed by William P. Wardlow, U.S. Naval Academy, Annapolis, Mary-
land.

Let Fq denote a field with g elements. Suppose that A is an m X n matrix over Fq
that has a right inverse over F,. How many right inverses does A have over F?

Solutions

Three Intersecting Cevians June 1997
1524. Proposed by Ted Zerger, Kansas Wesleyan University, Salina, Kansas.

Given AABC, let A’, B',C’ be the points on the sides BC,CA, AB, respectively,
such that
BA' CB' AC' 1
BC ~ AC ~ AB I 0<t<g3
Let A", B", C" be the points of intersection of AA" and CC’, BB’ and AA’, CC’
and BB', respectively. Prove that the ratios
AA”  A”B" :B"A'=BB" :B"C":C"B'=CC":C"A": A"C' =t:1—2¢:¢>.
(A typographical error in the second display of the original statement has been
corrected.)
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L. Solution by Robert L. Young, Osteruville, Massachusetts.

Let 0 be any point in the plane of A ABC and let X denote the vector from 0 to X.
The given imply A’ =(1 —t)B +¢C,B' =(1 —t)C +¢A,C’' = (1 —¢)A + ¢B, and the
existence of scalars A and w such that

A" =(1—=MNA+ A = (1-p)C+ pC'. (1)
Substituting for A" and C’, we get
(1= DA+ A1 —£)B+AC=pu(l—t)A+ utB + (1 - pu)C,
or
(I-A—p+ut)(A=C)+(A—At—put)(B-C) =0,

which implies A =¢/8 and u=(1—1¢)/8, where 6=1t>—¢+ 1. Thus, equation (1)
implies AA” = AAA" =tAA' /8 and CA" = uCA'=(1—-1t)CC'/6. The symmetry
of the problem implies AB” =(1—1t)AA'/8, hence A"B" = AB" —AA" =
(1—-2t)AA'/6 and B" A’ = AA' — AB” =t?AA’ /8. Therefore AA”: A"B" :B" A’
=¢:1—2t:¢% Similarly, BB” : B"C" :C"B'=CC" :C" A" : A"C' =¢:1— 2¢: 2.

I1. Solution by Neela Lakshmanan, University of Scranton, Scranton, Pennsylvania.
Applying Menelaus’” theorem to A AA’B and the transversal CC’, we have

AN AC BCT AN 1t

A CB A ~a U7t =
Thus, AA"/A" A" =t/(1 —t)*, and hence AA"/AA’'=t/(1 —t+1t*). Likewise, by
applying Menelaus’ theorem to AAA'C and the transversal BB', we obtain
AB"/B" A'=(1—1t)/t* hence AB"/AA'=(1—1t)/(1—t+1t>). It follows that
A"B"/AA' =1 —2t)/(1 —t+t*) and B" A’ JAA' =t*>/(1 — t + t*). Therefore,

AA" : A"B":B" A" =t:1—2¢t:t%
By symmetrical considerations, we get
BB" :B"C":C"B'=CC":C"A": A"C'=+¢:1—2¢:t>.

Also solved by ]. C. Binz (Switzerland), Mansur Boase (student, England), Sabin Cautis (Canada),
Con Amore Problem Group (Denmark), Miguel Amengual Covas (Spain), Daniele Donini (Italy), David
Doster, Robert L. Doucette, Ragnar Dybvik (Norway), Milton P. Eisner, Hans Kappus (Switzerland),
Atar Sen Mittal, Michael Nathanson, William A. Newcomb, José H. Nieto (Venczuela), Stephen Noltie,
P. E. Niiesch (Switzerland), Gao Peng (graduate student), Ron Schryer (professor emeritus), Michael
Vowe (Switzerland), David Zhu, and the proposer.

Fixed Ponts of a Bijection of the Symmetric Group June 1997
1525. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, New York.

Define a mapping f: S, — S, as follows. Given a permutation 7 of {1,2,...,n},
express it in cycle form, including any fixed elements, such that the smallest entry of
each cycle appears last, and the last entries among cycles appear in increasing order.
The permutation f(7) is then defined by removing all inner parentheses and
interpreting the result as the one-line representation of f(7r). In other words, the ith
entry of the line is f()i). (For example, expressed in this cycle form,
f(4,6,1(2)(53)) = (4,2,6,3,1)5).) Characterize those 7 fixed by f, and determine
their cardinality.


http://www.jstor.org/page/info/about/policies/terms.jsp

228 MATHEMATICS MAGAZINE

Solution by José H. Nieto, Maracaibo, Venezuela.

The permutations fixed by f are those whose cycles are formed by consecutive
integers, and their number is 2",

If m€S, is such that f(w) =, express it in cycle form as described in the
statement of the problem. Its first cycle must be of the form (a, ..., a;) with a; = 1.
Since we have m(a,) =a,,, =f(w)i+ 1) =7m(i+ 1 for ] <i<k— 1, it follows that
a; =14+ 1. Thus the first cycle is (2,3,...,k, 1) (or simply (1) if k =1). If k <n, the
same reasoning shows that the second cycle is of the form (k+ 2,k +3,..., 1,k + 1),
and that all cycles are formed by consecutive integers in general. Conversely, if 7€ S,
has this property, a direct verification shows that f() = .

All of these permutations may be generated as follows: write a left parenthesis
followed by the numbers from 1 to n, separated by blank spaces, and close the
sequence with a right parentheses. Choose any subset of the set of n—1 spaces
between consecutive integers, and write “)(” in each selected space. Thus we may
obtain all the fixed elements of f, expressed as a product of cycles. Its number is 2"~
since this is the number of subsets of a set with n — 1 elements.

Also solved by Vic Abad, ]. C. Binz (Switzerland), David Callan, Con Amore Problem Group
(Denmark), Robert L. Doucette, Jerry G. Ianni, lIoana Mihaila, Jean-Claude Ndogmo (South Africa),

Allan Pedersen ( Denmark), Gao Peng (graduate student), Western Maryland College Problems Group, and
the proposer.

Bounded Solutions to a Linear Congruence June 1997

1526. Proposed by Wu Wei Chao, He Nan Normal University, Xin Xiang City, He
Nan Province, China.

Let p be an odd prime number, and let @ and b be positive integers with
1 <a <p. Find the number of ordered pairs (x, y) of positive integers such that p
divides x + ay and x +y <bp.

Solution by Vic Abad, University of Houston, Houston, Texas.

The number of ordered pairs is (pb* — 3b + 2) /2.

First, fix x. Because the congruence x +ay =0 (mod p) defines a unique residue
class of y (mod p), the number of values of y for which p divides x +ay and
0<y<bp is b. Thus, the number of ordered pairs (x, y) with 0 <x <bp and
0 <y <bp for which p divides x + ay is (bp — 1)b — (b — 1). Partition these ordered
pairs into three sets according to x +y <bp, x +y > bp, and x +y = bp. The set of
(x, y) for which x +y <bp is in one-to-one correspondence with the set of (x', y")
for which x" +y’' >bp via the map x'=bp —«x,y" =bp —y. For x +y =bp, the
condition that p divides x +ay is equivalent to p dividing (a — 1)y, or simply p
dividing y. The number of such solutions is b — 1. Combining these facts, the
number of ordered pairs with x +y <bp is

[(bp—1)b—=(b—1)]—(b=1) pb®>—3b+2
2 B 2 :

Also solved by J. C. Binz (Switzerland), Mansur Boase (student, England), John Christopher, Con
Amore Problem Group (Denmark), Robert L. Doucette, Thomas R. Hagedorn, José H. Nieto (Venezuela),
Allan Pedersen (Denmark), and the proposer. There were four incomplete solutions and one incorrect
solution.

Computing Terms in a Symmetric Matrix June 1997

1527. Proposed by |. C. Binz, University of Bern, Bern, Switzerland.
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For n a nonnegative integer, let A, =(a; )y, 1<, be the (n+1)X(n+1)
matrix defined by @, =a, y =1 and

@ =a; _ tima;_y (i,k=1).
Show that A, is symmetric, and evaluate a, ;.
I. Solution by Nicholas C. Singer, Annandale, Virginia.
We show that

ik
L= A md
0 j;)(])(])]m

by showing that it satisfies the conditions of the problem. This is symmetric in ¢ and
k, and equals 1 if i or k is 0. Next,

ima,_, _, =imy, (1_ l)(lcgl)j!71zf= > (l_ l)(kgl)]‘!im"“

j=0 J j=0 J
i—1\(k—=1), . o i\[k—1).

Thus

A oy Fima,_ ) =) (i.)(k]_.l)j!mj+ h (;)(f:ll)]fmf

j=0 J j=z1

(5 (571)]

=1+ )

j=1
=1+ ) i.)j!mj(]f)=ai,\
j=1 J ’

I1. Solution by Western Maryland College Problems Group, Westminster, Maryland.

We show that

minf{i, k}

i mJ
ap= L (1)j(7<)jj_g»
j=0

where (i), :=i(i = 1)-+-(i —j + 1). To arrive at this expression for a;, we define the
generating functions

A(t) = E ik 3T
i=0

The recursion for a,; leads to

Ad(t) =(1+mt) A (t) = - = (L+mt)  Ay(¢)
(K -
=) .)mjtj-z—,.
j=0 J n=0 n

The coefficient of ¢’ can now be read off and after multiplying by i! we recover the
stated expression for a;;. The symmetry follows for free.
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Also solved by Vic Abad, Robert A. Agnew, Dale R. Buske, David Callan, Con Amore Problem Group
(Denmark), Robert L. Doucette, Bassem B. Ghalayini and Ajaj A. Tarabay (Lebanon), José H. Nicto
(Venezuela), Allan Pedersen (Denmark), Gao Peng (graduate student), Heinz-Jiirgen Seiffert (Germany),
Michael Vowe (Switzerland), and the proposer.

Inequalities in a Convex n-gon June 1997
1528. Proposed by Florin S. Pirvinescu, Slatina, Romania.

Let M be a point in the interior of convex polygon A A,... A . If d, is the
distance from M to A, A, (A, =A)), show that

(dy +dy)(dy+dy) -+ (d, +dy) <2" cos" - MA,-MA,- - - MA,

n

and determine when equality holds.

Solution by Heinz-Jiirgen Seiffert, Berlin, Germany.
Set o =L MA A, and B, =2LMA A, k=1,...,n (A;=A,). We have
dy = MA, ., sin a; ., = MA; sin B, which implies

o, + B o —
d,_, +d, = MA,(sin oy, + sin B,) = 2MA, sin— 5 B cos—~ 5 By L k=1,...,n.

It follows that

ﬂ (dp_, +d)=2" n (MAk'sin ak;'gkcos akg'Bk).

k=1

Since the sine is strictly increasing and concave on (0, 7/2), from the arithmetic
mean-geometric mean inequality and Jensen’s Inequality we get

l_[ sin—k— Dk 'B < sin" ( D al\znﬁk) = cos"(m/n),
k

k=1 =1

with equality if and only if a; + By = a, + B, = - = @, + B,, where we have used

'_ (e + B) = (n — 2)7r. Moreover, we have

n?

l—[cos B" <1,

k=1

with equality if and only if «; = B, for k=1,...,n. The desired inequality follows.

Clearly, there is equality if A;A,... A, is regular and M is its center. Conversely,
if equality holds, then from above we have o = B, =(/2—1/n)m fork=1,...,n
It then easily follows that MA, = MA, = -+ = MA,, and further that A/ A, ... A, is
equilateral. Therefore, the convex polygon A, A, ... A, must be regular. Now, it is
easily seen that M must be the center.

Comment. Murray Klamkin observed that the result follows from the stronger
inequality with d redefined to be the length of the angle bisector of £ Ay MA, .,
referring us to D. S. Mitrinovic, J. E. Pecaric, and V. Volenic, Recent Advances in
Geometric Inequalities, p. 423.

Also solved by Mansur Boase (student, England), Con Amore Problem Group (Denmark), Robert L.
Doucette, Lorraine L. Foster and Tung-Po Lin, Murray S. Klamkin, Can A. Minh (graduate student), José
H. Nieto (Venezuela), Stephen Noltie, Allan Pedersen (Denmark), Gao Peng (graduate student), Achilleas
Sinefakopoulos (student, Greece), Michael Vowe (Switzerland), Robert L. Young, and the proposer.
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Answers

Solutions to the Quickies on page 226.

A880. The right-hand side is clearly the number of one-to-one functions from an
n-element set to itself.
Since there are (n — k)" functions from an n-element set to an (n — k)-element

k
is the number of onto functions from an n-element set to itself (by the inclusion-

exclusion principle).
Finally, since the one-to-one functions and the onto functions from an n-element
set to itself are identical, equality follows.

set, and an n-element set has (") subsets with (n — k) elements, the left-hand side

A881. The only four such functions are

flx,y) =x,f(x,y) =y, f(x,y) =min{x, y}, f(x, y) = max{x, y}.

Clearly f(x, y) =x =1y on the line x=y. Let A={(x, y): f(x, y) =x}. Then Aisa
closed set and its complement A° is the open set A°={(x, y): f(x, y) =y, x #y}.
Similarly, B ={(x, y): f(x, y) =y} is closed and B ={(x, y): f(x, y) =x, x #y} is
open. The open half-plane U={(x, y): x>y} is a connected set. Since U is the
disjoint union of the open sets U N A° and U N B¢, either UN A°=J or UN B® = .
Thus, either f(x, y) =x or f(x, y) =y on U. Similarly, either f(x, y) =x or f(x, y)
=y on {(x, y): x <y}. The four combinations of possibilities give rise to the four
functions listed above, all of which are continuous.

A882. The matrix A has q’"("_’") right inverses over F,. To see this, we note that,
since AB =1, for some n Xm matrix, B, A must have full rank m. Hence the
nullspace of A has dimension n —m and consists of ¢"~" vectors. Therefore, the
right inverses of A are precisely the (¢"~™™)" matrices obtained from B by adding to

each of the m columns of B any one of the ¢"™" vectors in the nullspace of A.

Editor’s Notes (continued from page 224)
Reader Paul Boisvert also commented on The truel, by Kilgour and Brams:

It seems impossible to believe, but the sad truth is that the otherwise interesting
article ... is marred by a crippling flaw. [The authors] make reference to two
Q. Tarantino films involving truels, but neglect to discuss the original, perfect, and
still inimitable truel scene in filmic history: the climax of The Good, the Bad, and
the Ugly. To compare Tarantino’s glib, derivative efforts to Sergio Leone’s ultimate
confrontation among Eastwood, Van Cleef, and Wallach (forming, as they did, a
human equilateral triangle inside the circular center of the barren graveyard...) is
blasphemy. [Leone’s truel] perfectly illustrates the way in which real life always
escapes mathematical modeling. The one thing neither [the authors] nor Eli
Wallach took into account was that one player might cheat by surreptitiously
removing someone else’s (Eli’s) bullets. As Eli survived—proving that the best
strategy may be to have no ammunition whatsoever—The Ugly added a new fillip
to the theory, one that I hope the authors will consider in future articles.
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REVIEWS

PAUL J. CAMPBELL, editor
Beloit College

1997-98: Universitat Augsburg,
Germany

Assistant Editor: Eric S. Rosenthal, West -Orange, NJ. Articles and books are selected for
this section to call attention to interesting mathematical exposition that occurs outside the
mainstream of mathematics literature. Readers are invited to suggest items for review to/the
editors.

Wells, Charles, The Handbook of Mathematical Discourse, Version 0.71, March 1998, http:
//wwu-math.cwru.edu/~cfw2/abouthbk.htm , or email the author (cfw2@po.cwru.edu) for
a printed copy; x + 135 pp. Communicating mathematics: Useful ideas from computer
science, American Mathematical Monthly 102 (1995) 397-408. Bagchi, Atish, and Charles
Wells, On the communication of mathematical reasoning, Primus 8 (1) (March 1998) 15—
27. Bagchi, Atish, and Charles Wells, Varieties of mathematical prose. The papers are
available at www.cwru.edu/artsci/math/wells/pub/papers.html .

Is mathematics a foreign—or even alien—language for students? Many think so, and au-
thor Wells concurs. He and colleague Bagchi have begun a long-overdue investigation of
the mathematical register, the choice of English and symbolism used in communication of
mathematics. Wells’s book-in-the-making is a dictionary of rhetorical terms and compila-
tion of their usage in mathematical exposition—an attempt to make mathematicians aware
of how they talk and write, particularly the ways that vary from usage by others. Wells
tries to put a name to each kind of usage, employing terms from standard rhetoric (e.g.,
enthymeme), from mathematical education (malrule), and from his own colorful coinage
(existential bigamy, jump the fence). Students too should find the book useful. Wells solic-
its contributions of citations and suggestions from readers. While the book is descriptive,
the papers by Wells and with colleague Bagchi make specific normative recommendations
about oral and written mathematical exposition. (Fortunately, the book and papers are
available electronically in dvi, PS, and pdf formats. Too many othér documents on the Web
are available only by inconvenient multiple downloads in HTML, a few pages at a time,
with equations as individual figures that print ugly.)

Maligranda, Lech, Why Hoélder’s inequality should be called Rogers’ inequality, Mathemat-
ical Inequalities and Applications 1 (1) (January 1998) 69-83.

The inequality

n n 1/p n 1/q

D awbi < (Z ai) (Z b%) ,

k=1 k=1 k=1
true for ak,bx > 0, p > 1, and 1/p + 1/¢q = 1, was proved in slightly different form by
Leonard J. Rogers (of Rogers-Ramanujan identities fame) in 1888, a year before Otto
Holder proved a more general result. Although Holder cited Rogers, subsequent authors
named the inequality after Hélder, who had published in a more accessible journal. Author
Maligranda documents the history and mathematics involved and urges that the result
be renamed the Rogers-Hdlder inequality. Perhaps some enterprising soul will start a
Web site to collect together all such suggested revisions of history of mathematics, despite
Fejér’s caution that “the history of mathematics serves to prove that nobody has discovered

anything: there was always somebody who knew it before.” (Thanks to author Maligranda
at lech@sm.1luth.se for volunteering a reprint from the first issue of this new journal.)

232


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 71, NO. 3, JUNE 1998 233

Forbes, Tony, Ten Primes: A search for ten consecutive primes in arithmetic progression:
Success!!!, http://www.ltkz.demon.co.uk/ar2/10primes.htm .

In the April 1998 issue of THIS MAGAZINE, I reported on the discovery of nine consecu-
tive primes in arithmetic progression, suggesting that you could be confident that the record
would stand for some time. Wrong! However, the team believes that finding a sequence of
eleven is “far too difficult,” in part because the minimum progression gap becomes 2,310
instead of 210. “We need a new idea, or a trillion-fold increase in computer speeds. So
we expect the Ten Primes record to stand for a long time to come.” This time, it’s their
prediction, not mine.

Avnir, David, Ofer Biham, Daniel Lidar, and Ofer Malcai, Is the geometry of nature frac-
tal?, Science 279 (2 January 1998) 39-40.

Answer: Maybe no, but we will keep saying that it is. “Do power laws that are limited
in range represent fractals? Is it justified to term them as such?” The authors refer to
calculating a fractal dimension D from a relation of the form P = krf(®)| where f(D)
is a simple function of D. A fit of data to such a law does not imply fractality over
many orders of magnitude; in few reports in the physics literature does a fit span more
than two orders of magnitude and in no case more than three. Also, few such reports
have any theoretical backing. However, such laws can be useful on their own, without
the trendy “fractal” label. Moreover, “[s|everal key processes involving equilibrium-critical
phenomena (in magnets, liquids, percolations, and phase transitions, for example) and some
nonequilibrium growth models (such as aggregation) are backed by intrinsically scale-free
theories and lead therefore to power-law scaling behavior on all scales.”

Cipra, Barry, Proving a link between logic and origami, Science 279 (6 February 1998)
804-805.

Origami is the art of folding shapes (e.g., peace cranes) from a square of paper. It involves
several skills: devising a pattern and sequence of creases to create a shape, discerning from
the crease lines the order of folding (I find this nontrivial even for roadmaps), and predicting
properties of the folded object from the crease pattern (e.g., a roadmap is supposed to fold
flat). The question of whether a pattern can be folded flat turns out to be NP-complete.
Barry Hayes (Placeware Inc., Mountain View, Calif.) and Marshall Bern (Xerox Palo
Alto Research Center) translated logical expressions into crease patterns and showed that
the flat-folding problem is equivalent to the NP-hard problem called not-all-true 3-SAT.
This problem is, given a sentence in propositional logic consisting of three-variable clauses,
in each of which not all three variables are assigned True, determine if there is a truth-
assignment that makes the sentence true.

Cipra, Barry, Sieving prime numbers from thin ore, Science 279 (2 January 1998) 31.

A mathematical sieve is an algorithm to eliminate non-primes from a sequence. For exam-
ple, the Euclidean sieve, applied to 2 through 100, first eliminates all multiples of 2, then
all remaining multiples of 3, and so on. Stopping after eliminating multiples of 5 gives
an estimate of 28 for the number of primes; the sieve fails to eliminate only 49, 77, and
91. John Friedlander (University of Toronto) and Henryk Iwaniec (Rutgers University)
have refined the asymptotic sieve, developed by E. Bombieri in the 1970s, to show that
numbers of the form a? + b*—a sequence with asymptotic density zero—include infinitely
many primes. The peculiar form of a2 + b* facilitates use of Gaussian integers (of the form
a + by/—1) and theory from algebraic number theory. Tantalizing in their simplicity are
such open problems as whether numbers of the form n2 + 1 include an infinite number of
primes, or if each interval between consecutive squares must contain a prime.
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Twenty-Sixth Annual USA Mathematical Olympiad —
Problems and Solutions

1. Let p1,p2,ps,... be the prime numbers listed in increasing order, and let zq
be a real number between 0 and 1. For positive integers k, define

0 if Tp—-1 = 0,
Ty =
{ Ph } if Tg—1 75 0’

Tk-1

where {z} denotes the fractional part of z. (The fractional part of z is given by
z — |z| where |z is the greatest integer less than or equal to z.) Find, with proof,
all zo satisfying 0 < 9 < 1 for which the sequence zg, z1, T2, ... eventually becomes
0.

Solution. The sequence eventually becomes 0 if and only if zg is a rational number.

First we prove that, for £ > 1, every rational term z; has a rational predecessor
Zk—1. Suppose i is rational. If z; = 0 then either z4—1 = 0 or pr/zk—1 is a
positive integer; either way, xx_; is rational. If z; is rational and nonzero, then the
relation

o= {xpk } = xpk B vak J yields a1 = _pk——_’
k—1 k—1 k—1 Tr +\. Dk J
Tr—1

which shows that zx_; is rational. Since every rational term z; with k¥ > 1 has
a rational predecessor, it follows by induction that, if z; is rational for some k,
then zg is rational. In particular, if the sequence eventually becomes 0, then z¢ is
rational.

To prove the converse, observe that if zx—; = m/n with 0 < m < n, then z; =
r/m, where r is the remainder that results from dividing np; by m. Hence the
denominator of each nonzero term is strictly less than the denominator of the term
before. In particular, the number of nonzero terms in the sequence cannot exceed
the denominator of zg.

Note that the above argument applies to any sequence {pi} of positive integers,
not just the sequence of primes.

2. Let ABC be a triangle, and draw isosceles triangles BCD,CAE, ABF ex-
ternally to ABC, with BC,CA, AB as their respectlve bases. Prove that the lines

through A, B, C perpendicular to the lines EF FD DE respectively, are concur-
rent.

Solution. We first show that for any four points W, X,Y, Z in the plane, the lines
WX and Y Z are perpendicular if and only if

WY? -WZ?=XY? - X2Z° (%)

234
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To prove this, introduce Cartesian coordinates such that W = (0,0), X = (1,0),
Y = (21,41), and Z = (z2,y2). Then (*) becomes

B4yl —as -y = (@ — 1)+ — (22— 1) -3,

which upon cancellation yields z; = z3. This is true if and only if line Y7 is
perpendicular to the z-axis WX.

F
B
P
N
C
If P is the intersection of the perpendiculars from B and C to lines FD and DE,
respectively, then the fact noted above yields

PF? - PD? = BF? - BD?, and PD?- PE?=(CD?- CE*

From the given isosceles triangles, we have BF = AF, BD = CD, and CE = AE.
Therefore

PF? — PE* = AF? — AE%.

Hence line PA is also perpendicular to line EF, which completes the proof.

Second Solution: Let C; be the circle with center D and radius BD, Cy the circle
with center E and radius CE, and C3 the circle of center F' and radius AF. The
line through A and perpendicular to EF is the radical axis of circles Co and Cs, the
line through B and perpendicular to DF' is the radical axis of circles C; and Cs, and
the line through C and perpendicular to DE is the radical axis of circles C; and Cs.
The result follows because these three radical axes meet at the radical center of the
three circles.

3. Prove that for any integer n, there exists a unique polynomial @ with coeffi-
cients in {0,1,...,9} such that @Q(—2) = Q(-5) = n.

Solution. First suppose there exists a polynomial @ with coefficientsin {0, 1,...,9}
such that Q(—2) = Q(—5) = n. We shall prove that this polynomial is unique. By
the Factor Theorem, we can write Q(z) = P(z)R(z) + n where P(z) = (z + 2)(z +
5) = 22+7z+10 and R(z) = ro+r1z+7r2z2+- - - is a polynomial. Then rg,71,72,. ..
are integers such that

10ro +n € {0,1,...,9}, 10r + Tre—1 + 16— € {0,1,...,9}, k>1 (%)

(with the understanding that 7_; = 0). For each k, () uniquely determines r once
r; is known for all j < k. Uniqueness of R, and therefore of Q, follows.

Existence will follow from the fact that for the unique sequence {ry} satisfying
(x), there exists some N such that 7, = 0 for all £ > N. First note that {rs} is
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bounded, since |rol,|r1| < B and B > 9 imply |rx| < B for all k. This follows by
induction, using 10|rg| < 7|rg—1| + |rk—2| + 9 < 10B. More specifically, if r; < M
fori=k—-1,k—2, then

7’I'k_1 Tk—2 > aM

> =l s
Tk 10 = 5

= 10
whileif r; > Lfori =k —1, k — 2, then

7’f'k_1 Tk—2 9 4L 9
S RS VR T T i}

Since the sequence {rx} is bounded, we can define Ly = min{rg, r¢_1,...} and
My, = max{rk, Tk+1,...}. Clearly Ly < Lyy1 and My > M4, for all k.

Since Ly < My, for all k, the non-decreasing sequence {L} must stop increasing
eventually, and, similarly, the non-increasing sequence { M} must stop decreasing.
In other words, there exist L, M, N such that Ly = L and My = M for all k > N.
Certainly L < M, and M > 0, since no three consecutive terms in {ry} can be
negative, but the above arguments also imply L > —4M/5 and M < —4L/5+9/10.
A quick sketch (shown below) shows that the set of real pairs (L, M) satisfying
these conditions is a closed triangular region containing no lattice points other than
(0, 0). It follows that 7t = 0 for all k£ > N, proving existence.

4. To clip a convex n-gon means to choose a pair of consecutive sides AB, BC
and to replace them by the three segments AM, M N, and NC, where M is the
midpoint of AB and N is the midpoint of BC. In other words, one cuts off the
triangle M BN to obtain a convex (n + 1)-gon. A regular hexagon Pg of area 1 is
clipped to obtain a heptagon P;. Then Py is clipped (in one of the seven possible
ways) to obtain an octagon Pg, and so on. Prove that no matter how the clippings
are done, the area of P, is greater than 1/3, for all n > 6.

Solution. The key observation is that for any side S of Pg, there is some sub-
segment of S that is a side of P,,. (This is easily proved by induction on n.) Thus
P, has a vertex on each side of Ps. Since P, is convex, it contains a hexagon Q
with (at least) one vertex on each side of Pg. (The hexagon may be degenerate, as
some of its vertices may coincide.)

Let Ps = A1 AsA3A4AsAg, and let Q = By By B3B,BsBg, with B; on A;A;11
(indices are considered modulo 6). The side B;B;+; of Q is entirely contained
in triangle A;A;11 412, so Q encloses the smaller regular hexagon R (shaded in
the diagram below) whose sides are the central thirds of the segments A;A; 2,
1 < i < 6. The area of R is 1/3, as can be seen from the fact that its side
length is 1/+/3 times the side length of Pg, or from a dissection argument (count
the small equilateral triangles and halves thereof in the diagram below). Thus
Area(P,) > Area(Q) > Area(R) = 1/3. We obtain strict inequality by observing
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that P, is strictly larger that Q: if n = 6, this is obvious; if n > 6, then P, cannot
equal @ because P,, has more sides.

As Ao

A4 Al

As ' Ag

Note. With a little more work, one could improve 1/3 to 1/2. The minimal area
of a hexagon Q with one vertex on each side of Pg is in fact 1/2, attained when the
vertices of @ coincide in pairs at every other vertex of Pg, so the hexagon Q degen-
erates into an equilateral triangle. If the conditions of the problem were changed so
that the “cut-points” could be anywhere within adjacent segments instead of just
at the midpoints, then the best possible bound would be 1/2.

5. Prove that, for all positive real numbers a, b, c,
(@ + b® +abe)™ + (B3 + ¢ + abe) ™' + (¢ + a® + abe) ™! < (abe) L.
Solution. The inequality (a — b)(a® — b%) > 0 implies a® + b% > ab(a + b), so

1 < 1 c
ad + b +abc ~ abla+b)+abc abcla+b+c)

Similarly
1 < 1 _ a
b3+ c3 +abc = be(b+c) +abc  abc(a+b+c)’
and
1 - 1 B b
e +a3+abc = calc+a)+abc  abcla+b+c)
Thus

1 L1 .1 _atbte _ 1
a®+b +abc B +c3+abc 3+ad+abe ~ abc(a+b+c) abe

6. Suppose the sequence of nonnegative integers ay, as,. .. ,a1997 satisfies
a;+aj Layp; <a;+aj+1

for all 4,5 > 1 with i + j < 1997. Show that there exists a real number z such that
an = [nz] (the greatest integer < nz) for all 1 < n < 1997.
Solution. Any z that lies in all of the half-open intervals

K

I, = [“—” “”“), n=1,2,...,1997
n n
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will have the desired property. Let

a a .
L= max —=2=2=2 and U= min
1<n<1997 . p 1<n<1997 n q

am +1

We shall prove that % < , or, equivalently,

man, < n(amy + 1) (*)

for all m, n ranging from 1 to 1997. Then L < U, since L > U implies that (*) is
violated when n = p and m = ¢. Any point  in [L, U) has the desired property.

We prove (*) for all m, n ranging from 1 to 1997 by strong induction. The base case
m =mn = 1 is trivial. The induction step splits into three cases. If m = n, then (%)
certainly holds. If m > n, then the induction hypothesis gives (m—n)a, < n(am—n+
1), and adding n(am-n + an) < na,, yields (*). If m < n, then the induction
hypothesis yields man—m < (n —m)(am + 1), and adding ma, < m(am +an—m +1)
gives (x).

Thirty-Eighth Annual International Mathematical
Olympiad — Problems

1. In the plane the points with integer coordinates are the vertices of unit squares.
The squares are colored alternately black and white (as on a chessboard). For any
pair of positive integers m and n, consider a right-angled triangle whose vertices
have integer coordinates and whose legs, of lengths m and n, lie along edges of the
squares. Let S; be the total area of the black part of the triangle and Sy the total
area of the white part. Let

f(m, n) = |Sl - Sgl

(a) Calculate f(m, n) for all positive integers m and n which are either both even
or both odd.

(b) Prove that f(m, n) < tmax{m, n} for all m and n.

(c) Show that there is no constant C such that f(m, n) < C for all m and n.

2. Angle A is the smallest angle in triangle ABC. Points B and C divide the
circumcircle of the triangle into two arcs. Let U be an interior point of the arc
between B and C which does not contain A. The perpendicular bisectors of AB
and AC meet the line AU at V and W, respectively. Lines BV and CW meet at
T. Show that

AU =TB+TC.

3. Let z1, Z2,...,Z, be real numbers satisfying the conditions: |z; + z2 +--- +
z,| = land |z;| < (n+1)/2fori =1, 2,...,n. Show that there exists a permutation
Y1, Y2,-.-sYn Of 1, T2,..., Ty such that

n+1
lyr +2y2 + -+ - + nyn| < 5
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4. Annxn matrix (square array) whose entries come from the set S = {1, 2,...,2n—
1} is called a silver matrix if, for each i = 1, 2,...,n, the i*" row and i*" column
together contain all elements of S. Show that

(a) there is no silver matrix for n = 1997;

(b) silver matrices exist for infinitely many values of n.
5. Find all pairs (a, b) of positive integers that satisfy the equation o = e,

6. For each positive integer n, let f(n) denote the number of ways of representing
n as a sum of powers of 2 with nonnegative integer exponents. Representations
which differ only in the ordering of their summands are considered to be the same.
For instance, f(4) = 4 because the number 4 can be represented in the following
four ways: 4; 2+ 2; 24+ 1+1; 1+ 1+ 1+ 1. Prove that for every integer n > 3,

2/t < F2m) < 22,

Notes
The top eight students on the 1997 USAMO were (in alphabetical order):
Carl J. Bosley Topeka, KS
Li-Chung Chen Cupertino, CA
John J. Clyde New Plymouth, ID
Nathan G. Curtis Alexandria, VA
Kevin D. Lacker Cincinnati, OH
Davesh Maulik Roslyn Heights, NY
Josh P. Nichols-Barrer Newton Center, MA
Daniel P. Stronger New York, NY

Josh Nichols-Barrer was the winner of the Greitzer-Klamkin award, given to the
top scorer on the USAMO. Members of the USA team at the 1997 IMO (Mar del
Plata, Argentina) were Carl Bosley, Li-Chung Chen, John Clyde, Nathan Curtis,
Josh Nichols-Barrer, and Daniel Stronger. Bosley and Curtis both received gold
medals, while Chen, Clyde, Nichols-Barrer, and Stronger received silver medals. In
terms of total score, the highest ranking of the eighty-two participating teams were
as follows:

China 223 Ukraine 195
Hungary 219 Bulgaria 191
Iran ’ 217 Romania 191
United States 204 Australia 187
Russia 204 Vietnam 183

The 1997 USA Mathematical Olympiad was prepared by Titu Andreescu, Elgin
Johnston, Jim Propp, Cecil Rousseau (chair), Alexander Soifer, Richard Stong,
and Paul Zeitz. The training program to prepare the USA team for the IMO (the
Mathematical Olympiad Summer Program) was held at the University of Nebraska,
Lincoln, NE. Titu Andreescu (Director), Fan Chung, Zuming Feng, Razvan Gelca,
Elgin Johnston, and Kiran Kedlaya served as instructors, assisted by Jeremy Bem
and Jonathan Weinstein.
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The booklet Mathematical Olympiads 1997 presents additional solutions to prob-
lems on the 26th USAMO and solutions to the 38th IMO. Such a booklet has been
published every year since 1976. Copies are $5.00 for each year 1976-1997. They
are available from:

Dr. Walter Mientka, Department of Mathematics, University of Ne-
braska, Lincoln, NE 68588-0658.

The USA Mathematical Olympiad, participation of the US team in the Interna-
tional Mathematical Olympiad, and the sequence of examinations leading to quali-
fication for these olympiads are under the administration of the M.A.A. Committee
on American Mathematical Competitions, and these activities are sponsored by
eight organizations of professional mathematicians. For further information about
this sequence of examinations, contact the Executive Director of the Committee,
Professor Mientka, at the above address.

This report was prepared by Titu Andreescu, Elgin Johnston, and Cecil Rousseau.

Letter to the Editor

Dear Editor:

Mark Krusemeyer’s recursively defined bijection between two manifestations of
the Catalan numbers (A parenthetical note (to a paper of Guy), this MAGAZINE,
October 1996, pp. 257-260) also has a simple explicit description as follows. Given a
CG-arrangement (legal arrangement of pairs of empty parentheses), first delete the
leftmost left parenthesis, change each right parenthesis to a letter (z, say), and add
a letter at the end. Then insert right parentheses anew (in the only way possible)
to produce a legal bracketing of the letters. For example, )()(()) — z(z((zzz —
z(x((zz)z)) agreeswith [ ][] [[]] — a|bl|cd]e]] in Krusemeyer’s table for n = 4.
Expressed this way, the bijection’s inverse becomes obvious. (This construction is
implicit in an argument on page 54 of Advanced Combinatorics, Louis Comtet,
D. Reidel, Boston, 1974.) '

It is fairly easy to show the construction works: the first step either yields a mere
zz, and no parenthesizing is needed, or else there must be at least one occurrence
of (zz, and a right parenthesis must be inserted immediately after it; then we treat
this (zz) as a single z and proceed by induction.

That our mapping (say ¢) agrees with Krusemeyer’s F' can also be established
by induction. The base cases may be verified directly. For the induction step, it is
helpful to let ¢ denote the initial mapping (before the right parentheses, or right
floor symbols in Krusemeyer’s notation, are inserted) and to consider four cases
for & = [B]7, according as the CG-arrangements 8 and vy are empty or not. For
example, if B # 0,y # 0, then « looks like [[* * xx]] [**] where the asterisks denote

——

B ¥
any number (possibly 0) of ceiling symbols. By definition, a is |[x x x xzz|*x*xz
¥B ¥y
where the asterisks are now letters or left floors. Also, ¥8 and 1y appear in Yo
as indicated. Finally, inserting the right floors (in the only way possible) yields
da = |#B]|¢y] and the induction step follows in this case. The other cases are

similar.

David Callan
Dept. of Statistics, Univ. of Wisconsin, Madison, WI 53706-1693
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